Difference between revisions of "2016 AMC 12A Problems/Problem 12"

(Solution 4)
Line 39: Line 39:
 
One only needs the angle bisector theorem and some simple algebra to solve this question.
 
One only needs the angle bisector theorem and some simple algebra to solve this question.
  
The question asks for AF:DF. Applying the angle bisector theorem to <math>\triangle ABD</math> yields the ratio <math>\frac {AF}{DF}</math> :
+
The question asks for AF:DF. Apply the angle bisector theorem to <math>\triangle ABD</math> to get the ratio <math>\frac {AF}{DF}</math> :
  
 
<math>\frac {AF}{AB}</math> = <math>\frac {DF}{BD}</math> or, equivalently,  
 
<math>\frac {AF}{AB}</math> = <math>\frac {DF}{BD}</math> or, equivalently,  
Line 56: Line 56:
  
 
<math>\frac {AF}{DF}</math> = <math>\frac {AB}{BD}</math> = <math>\frac {AC + AB}{BC}</math> = <math>\frac {8 + 6}{7}</math> = 2.
 
<math>\frac {AF}{DF}</math> = <math>\frac {AB}{BD}</math> = <math>\frac {AC + AB}{BC}</math> = <math>\frac {8 + 6}{7}</math> = 2.
 
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2016|ab=A|num-b=11|num-a=13}}
 
{{AMC12 box|year=2016|ab=A|num-b=11|num-a=13}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 13:42, 31 December 2020

Problem 12

In $\triangle ABC$, $AB = 6$, $BC = 7$, and $CA = 8$. Point $D$ lies on $\overline{BC}$, and $\overline{AD}$ bisects $\angle BAC$. Point $E$ lies on $\overline{AC}$, and $\overline{BE}$ bisects $\angle ABC$. The bisectors intersect at $F$. What is the ratio $AF$ : $FD$?

[asy] pair A = (0,0), B=(6,0), C=intersectionpoints(Circle(A,8),Circle(B,7))[0], F=incenter(A,B,C), D=extension(A,F,B,C),E=extension(B,F,A,C); draw(A--B--C--A--D^^B--E); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,N); label("$D$",D,NE); label("$E$",E,NW); label("$F$",F,1.5*N); [/asy]

$\textbf{(A)}\ 3:2\qquad\textbf{(B)}\ 5:3\qquad\textbf{(C)}\ 2:1\qquad\textbf{(D)}\ 7:3\qquad\textbf{(E)}\ 5:2$

Solution 1

By the angle bisector theorem, $\frac{AB}{AE} = \frac{CB}{CE}$

$\frac{6}{AE} = \frac{7}{8 - AE}$ so $AE = \frac{48}{13}$

Similarly, $CD = 4$.

Now, we use mass points. Assign point $C$ a mass of $1$.

$mC \cdot CD = mB \cdot DB$ , so $mB = \frac{4}{3}$

Similarly, $A$ will have a mass of $\frac{7}{6}$

$mD = mC + mB = 1 + \frac{4}{3} = \frac{7}{3}$

So $\frac{AF}{AD} = \frac{mD}{mA} = \boxed{\textbf{(C)}\; 2 : 1}$

Solution 2

Denote $[\triangle{ABC}]$ as the area of triangle ABC and let $r$ be the inradius. Also, as above, use the angle bisector theorem to find that $BD = 3$. There are two ways to continue from here:

$1.$ Note that $F$ is the incenter. Then, $\frac{AF}{FD} = \frac{[\triangle{AFB}]}{[\triangle{BFD}]} = \frac{AB * \frac{r}{2}}{BD * \frac{r}{2}} = \frac{AB}{BD} =  \boxed{\textbf{(C)}\; 2 : 1}$

$2.$ Apply the angle bisector theorem on $\triangle{ABD}$ to get $\frac{AF}{FD} = \frac{AB}{BD} = \frac{6}{3} = \boxed{\textbf{(C)}\; 2 : 1}$

Solution 3

Draw the third angle bisector, and denote the point where this bisector intersects $AB$ as $P$. Using angle bisector theorem, we see $AE=48/13 , EC=56/13, AP=16/5, PB=14/5$. Applying Van Aubel's Theorem, $AF/FD=(48/13)/(56/13) + (16/5)/(14/5)=(6/7)+(8/7)=14/7=2/1$, and so the answer is $\boxed{\textbf{(C)}\; 2 : 1}$.

Solution 4

One only needs the angle bisector theorem and some simple algebra to solve this question.

The question asks for AF:DF. Apply the angle bisector theorem to $\triangle ABD$ to get the ratio $\frac {AF}{DF}$ :

$\frac {AF}{AB}$ = $\frac {DF}{BD}$ or, equivalently,

$\frac {AF}{DF}$ = $\frac {AB}{BD}$.

AB is given. To find BD apply the angle bisector theorem again to $\triangle ABC$ to get:

$\frac {BD}{AB}$ = $\frac {CD}{AC}$

---> $\frac {BD}{AB}$ = $\frac {BC - BD}{AC}$, since BD + CD = BC

---> BD = $\frac {AB*BC}{AC + AB}$.

Substituting this expression for BD into the proportion $\frac {AF}{DF}$ = $\frac {AB}{BD}$ yields:

$\frac {AF}{DF}$ = $\frac {AB}{BD}$ = $\frac {AC + AB}{BC}$ = $\frac {8 + 6}{7}$ = 2.

See Also

2016 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png