Difference between revisions of "2016 AMC 12B Problems/Problem 18"

(Solution)
(Solution)
Line 12: Line 12:
 
<cmath>A = \frac{\pi}{4} +\frac{1}{2}</cmath>  
 
<cmath>A = \frac{\pi}{4} +\frac{1}{2}</cmath>  
 
<asy>draw((0,-1.5)--(0,1.5),EndArrow);draw((-1.5,0)--(1.5,0),EndArrow);draw((0,1)--(1,0)--(0,-1)--(-1,0)--cycle,dotted);
 
<asy>draw((0,-1.5)--(0,1.5),EndArrow);draw((-1.5,0)--(1.5,0),EndArrow);draw((0,1)--(1,0)--(0,-1)--(-1,0)--cycle,dotted);
for(int i=0;i<4;++i){draw(rotate(i*90,(0,0))*arc((1/2,1/2),sqrt(1/2),-45,135));dot(rotate(i*89,(0,0))*(1/2,1/2));}</asy>
+
for(int i=0;i<4;++i){draw(rotate(i*90,(0,0))*arc((1/2,1/2),sqrt(1/2),0,90));dot(rotate(i*90,(0,0))*(1/2,1/2));}</asy>
 
Because of symmetry, the area is the same in all four quadrants.
 
Because of symmetry, the area is the same in all four quadrants.
 
The answer is <math>\boxed{\textbf{(B)}\ \pi + 2}</math>
 
The answer is <math>\boxed{\textbf{(B)}\ \pi + 2}</math>

Revision as of 21:37, 21 February 2016

Problem

What is the area of the region enclosed by the graph of the equation $x^2+y^2=|x|+|y|?$

$\textbf{(A)}\ \pi+\sqrt{2} \qquad\textbf{(B)}\ \pi+2 \qquad\textbf{(C)}\ \pi+2\sqrt{2} \qquad\textbf{(D)}\ 2\pi+\sqrt{2} \qquad\textbf{(E)}\ 2\pi+2\sqrt{2}$

Solution

Consider the case when $x > 0$, $y > 0$. \[x^2+y^2=x+y\] \[(x - \frac{1}{2})^2+(y - \frac{1}{2})^2=\frac{1}{2}\] Notice the circle intersect the axes at points $(0, 1)$ and $(1, 0)$. Find the area of this circle in the first quadrant. The area is made of a semi-circle with radius of $\frac{\sqrt{2}}{2}$ and a triangle: \[A = \frac{\pi}{4} +\frac{1}{2}\] [asy]draw((0,-1.5)--(0,1.5),EndArrow);draw((-1.5,0)--(1.5,0),EndArrow);draw((0,1)--(1,0)--(0,-1)--(-1,0)--cycle,dotted); for(int i=0;i<4;++i){draw(rotate(i*90,(0,0))*arc((1/2,1/2),sqrt(1/2),0,90));dot(rotate(i*90,(0,0))*(1/2,1/2));}[/asy] Because of symmetry, the area is the same in all four quadrants. The answer is $\boxed{\textbf{(B)}\ \pi + 2}$

See Also

2016 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png