Difference between revisions of "2016 AMC 8 Problems/Problem 10"

Line 5: Line 5:
 
==Solution==
 
==Solution==
 
Let us plug in <math>(5 * x)=1</math> into <math>3a-b</math>. Thus it would be <math>3(5)-x</math>. Now we have <math>2*(15-x)=1</math>. Plugging <cmath>2*(15-x)</cmath>into <math>3a-b</math>. We have <math>6-15+x=1</math>. Solving for <math>x</math> we have <cmath>-9+x=1</cmath><cmath>x=\boxed{\textbf{(D)} 10}</cmath>
 
Let us plug in <math>(5 * x)=1</math> into <math>3a-b</math>. Thus it would be <math>3(5)-x</math>. Now we have <math>2*(15-x)=1</math>. Plugging <cmath>2*(15-x)</cmath>into <math>3a-b</math>. We have <math>6-15+x=1</math>. Solving for <math>x</math> we have <cmath>-9+x=1</cmath><cmath>x=\boxed{\textbf{(D)} 10}</cmath>
 +
 +
{{AMC8 box|year=2016|num-b=9|num-a=11}}
 +
{{MAA Notice}}

Revision as of 09:46, 23 November 2016

Suppose that $a * b$ means $3a-b.$ What is the value of $x$ if \[2 * (5 * x)=1\] $\textbf{(A) }\frac{1}{10} \qquad\textbf{(B) }2\qquad\textbf{(C) }\frac{10}{3} \qquad\textbf{(D) }10\qquad \textbf{(E) }14$

Solution

Let us plug in $(5 * x)=1$ into $3a-b$. Thus it would be $3(5)-x$. Now we have $2*(15-x)=1$. Plugging \[2*(15-x)\]into $3a-b$. We have $6-15+x=1$. Solving for $x$ we have \[-9+x=1\]\[x=\boxed{\textbf{(D)} 10}\]

2016 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS