2016 AMC 8 Problems/Problem 19

Revision as of 12:15, 23 November 2016 by Wirecat (talk | contribs)

19. The sum of $25$ consecutive even integers is $10,000$. What is the largest of these $25$ consecutive integers?

$(A)\mbox{ }360\mbox{           }(B)\mbox{ }388\mbox{           }(C)\mbox{ }412\mbox{           }(D)\mbox{ }416\mbox{           }(E)\mbox{ }424\mbox{           }$

Solution

Let $n$ be the 13th consecutive even integer that's being added up. By doing this, we can see that the sum of all 25 even numbers will simply by $25n$ since $(n-2k)+\dots+(n-4)+(n-2)+(n)+(n+2)+(n+4)+ \dots +(n+2k)=25n$. Now, $25n=10000 \rightarrow n=400$ Remembering that this is the 13th integer, we wish to find the 25th, which is $400+2 \cdot (15-13)=424$.