Difference between revisions of "2016 AMC 8 Problems/Problem 22"
Reaganchoi (talk | contribs) (Created page with "Rectangle <math>DEFA</math> below is a <math>3 \times 4</math> rectangle with <math>DC=CB=BA</math> The area of the "bat wings" is [asy] draw((0,0)--(3,0)--(3,4)--(0,4)--(0,0)...") |
Reaganchoi (talk | contribs) m |
||
Line 1: | Line 1: | ||
Rectangle <math>DEFA</math> below is a <math>3 \times 4</math> rectangle with <math>DC=CB=BA</math> The area of the "bat wings" is | Rectangle <math>DEFA</math> below is a <math>3 \times 4</math> rectangle with <math>DC=CB=BA</math> The area of the "bat wings" is | ||
− | + | <asy> | |
draw((0,0)--(3,0)--(3,4)--(0,4)--(0,0)--(2,4)--(3,0)); | draw((0,0)--(3,0)--(3,4)--(0,4)--(0,0)--(2,4)--(3,0)); | ||
draw((3,0)--(1,4)--(0,0)); | draw((3,0)--(1,4)--(0,0)); | ||
fill((0,0)--(1,4)--(1.5,3)--(0,0), black); | fill((0,0)--(1,4)--(1.5,3)--(0,0), black); | ||
fill((3,0)--(2,4)--(1.5,3)--(3,0), black); | fill((3,0)--(2,4)--(1.5,3)--(3,0), black); | ||
− | + | </asy> | |
<math>\textbf{(A) }2\qquad\textbf{(B) }2 \frac{1}{2}\qquad\textbf{(C) }3\qquad\textbf{(D) }3 \frac{1}{2}\qquad \textbf{(E) }5</math> | <math>\textbf{(A) }2\qquad\textbf{(B) }2 \frac{1}{2}\qquad\textbf{(C) }3\qquad\textbf{(D) }3 \frac{1}{2}\qquad \textbf{(E) }5</math> |
Revision as of 10:32, 23 November 2016
Rectangle below is a rectangle with The area of the "bat wings" is
draw((0,0)--(3,0)--(3,4)--(0,4)--(0,0)--(2,4)--(3,0)); draw((3,0)--(1,4)--(0,0)); fill((0,0)--(1,4)--(1.5,3)--(0,0), black); fill((3,0)--(2,4)--(1.5,3)--(3,0), black); (Error compiling LaTeX. fill(f,t*g,p,false); ^ /usr/local/share/asymptote/plain_picture.asy: 1273.11: runtime: non-cyclic path cannot be filled)
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
2016 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.