Difference between revisions of "2016 AMC 8 Problems/Problem 25"

(Created page with "25. A semicircle is inscribed in an isosceles triangle with base <math>16</math> and height <math>15</math> so that the diameter of the semicircle is contained in the base of...")
 
m
Line 3: Line 3:
 
[Diagram]
 
[Diagram]
  
<math>\textbf{(A) }4 \sqrt{3}\qquad\textbf{(B) } \Dfrac{120}{17}\qquad\textbf{(C) }10\qquad\textbf{(D) }\Dfrac{17\sqrt{2}}{2}\qquad \textbf{(E) \frac{17\sqrt{3}}{2}</math>
+
<math>\textbf{(A) }4 \sqrt{3}\qquad\textbf{(B) } \dfrac{120}{17}\qquad\textbf{(C) }10\qquad\textbf{(D) }\dfrac{17\sqrt{2}}{2}\qquad \textbf{(E)} \dfrac{17\sqrt{3}}{2}</math>
  
 
==Solution==
 
==Solution==

Revision as of 10:39, 23 November 2016

25. A semicircle is inscribed in an isosceles triangle with base $16$ and height $15$ so that the diameter of the semicircle is contained in the base of the triangle as shown. What is the radius of the semicircle?

[Diagram]

$\textbf{(A) }4 \sqrt{3}\qquad\textbf{(B) } \dfrac{120}{17}\qquad\textbf{(C) }10\qquad\textbf{(D) }\dfrac{17\sqrt{2}}{2}\qquad \textbf{(E)} \dfrac{17\sqrt{3}}{2}$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

2016 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png