Difference between revisions of "2016 USAMO Problems/Problem 4"

(Delete the obviously wrong sol3)
Line 45: Line 45:
 
'''Step 7:''' By Step 6 and the second observation from Step 4, the only possible solutions are <math>f \equiv 0</math> and <math>f(x) = x^2</math> for all <math>x \in \mathbb{R}.</math> It's easy to check that both of these work, so we're done.
 
'''Step 7:''' By Step 6 and the second observation from Step 4, the only possible solutions are <math>f \equiv 0</math> and <math>f(x) = x^2</math> for all <math>x \in \mathbb{R}.</math> It's easy to check that both of these work, so we're done.
  
 +
==Alternate Solution 1==
 +
From steps 1 and 2 we have that, setting <math>x=y=0</math>, <math>f(0)=0</math>, and, setting <math>x=0</math>, <math>f(-y)f(y)=(f(y))^2</math>, so if <math>f(y) \ne 0</math>, then <math>f(y)=f(-y)</math>. Furthermore, setting <math>y=-x</math> gives us <math>(f(x)-x^2) \cdot f(4x) + (f(-x)-x^2) \cdot f(4x) = f(0) = 0</math>. The LHS can be factored as <math>(f(x)+f(-x)-2x^2) \cdot f(4x) = 0</math>. Therefore, if <math>f(4x) \ne 0</math>, then we have <math>f(x)+f(-x)-2x^2=0</math>, or <math>f(x)+f(-x)=2x^2</math>. However, since from step 2 we have that <math>f(x)=f(-x)</math> assuming f(x) \ne 0<math>, the equation becomes </math>2f(x)=2x^2<math>, so </math>f(x)=0, x^2<math> are the only solutions.
 
==Solution 2==
 
==Solution 2==
Step 1: <math>x=y=0 \implies f(0)=0</math>
+
Step 1: </math>x=y=0 \implies f(0)=0<math>
  
Step 2: <math>x=0 \implies f(y)f(-y)=f(y)^{2}</math>. Now, assume <math>y \not = 0</math>. Then, if <math>f(y)=0</math>, we substitute in <math>-y</math> to get <math>f(y)f(-y)=f(-y)^{2}</math>, or <math>f(y)=f(-y)=0</math>. Otherwise, we divide both sides by <math>f(y)</math> to get <math>f(y)=f(-y)</math>. If <math>y=0</math>, we obviously have <math>f(0)=f(0)</math>. Thus, the function is even.
+
Step 2: </math>x=0 \implies f(y)f(-y)=f(y)^{2}<math>. Now, assume </math>y \not = 0<math>. Then, if </math>f(y)=0<math>, we substitute in </math>-y<math> to get </math>f(y)f(-y)=f(-y)^{2}<math>, or </math>f(y)=f(-y)=0<math>. Otherwise, we divide both sides by </math>f(y)<math> to get </math>f(y)=f(-y)<math>. If </math>y=0<math>, we obviously have </math>f(0)=f(0)<math>. Thus, the function is even.
 
.
 
.
Step 3: <math>y=-x \implies 2f(4x)(f(x)-x^{2})=0</math>. Thus, <math>\forall x</math>, we have <math>f(4x)=0</math> or <math>f(x)=x^{2}</math>.
+
Step 3: </math>y=-x \implies 2f(4x)(f(x)-x^{2})=0<math>. Thus, </math>\forall x<math>, we have </math>f(4x)=0<math> or </math>f(x)=x^{2}<math>.
  
Step 4: We now assume <math>f(x) \not = 0</math>, <math>x\not = 0</math>. We have <math>f(\frac{x}{4})=\frac{x^{2}}{16}</math>. Now, setting <math>x=y=\frac{x}{4}</math>, we have <math>f(\frac{x}{2}=\frac{x^{2}}{4}</math> or <math>f(\frac{x}{2})=0</math>. The former implies that <math>f(x)=0</math> or <math>x^{2}</math>. The latter implies that <math>f(x)=0</math> or <math>f(x)=\frac{x^{2}}{2}</math>. Assume the latter. <math>y=-2x \implies -\frac{3y^{2}}{2}f(7y)-{2y^{2}}f(5y)=\frac{x^{2}}{2}</math>. Clearly, this implies that <math>f(x)</math> is negative for some <math>m</math>. Now, we have <math>f(\frac{m}{4})=\frac{m^{2}}{16} \implies f(\frac{m}{2})=0,\frac{m^{2}}{4} \implies f(m) \geq 0</math>, which is a contradiction. Thus, <math>\forall x</math><math>f(x)=0</math> or <math>f(x)=x^{2}</math>.
+
Step 4: We now assume </math>f(x) \not = 0<math>, </math>x\not = 0<math>. We have </math>f(\frac{x}{4})=\frac{x^{2}}{16}<math>. Now, setting </math>x=y=\frac{x}{4}<math>, we have </math>f(\frac{x}{2}=\frac{x^{2}}{4}<math> or </math>f(\frac{x}{2})=0<math>. The former implies that </math>f(x)=0<math> or </math>x^{2}<math>. The latter implies that </math>f(x)=0<math> or </math>f(x)=\frac{x^{2}}{2}<math>. Assume the latter. </math>y=-2x \implies -\frac{3y^{2}}{2}f(7y)-{2y^{2}}f(5y)=\frac{x^{2}}{2}<math>. Clearly, this implies that </math>f(x)<math> is negative for some </math>m<math>. Now, we have </math>f(\frac{m}{4})=\frac{m^{2}}{16} \implies f(\frac{m}{2})=0,\frac{m^{2}}{4} \implies f(m) \geq 0<math>, which is a contradiction. Thus, </math>\forall x<math></math>f(x)=0<math> or </math>f(x)=x^{2}<math>.
 
 
Step 5: We now assume <math>f(x)=0</math>, <math>f(y)=y^{2}</math> for some <math>x,y \not = 0</math>. Let <math>m</math> be sufficiently large integer, let <math>z=|4^{m}x|</math> and take the absolute value of <math>y</math>(since the function is even). Choose <math>c</math> such that <math>3z-c=y</math>. Note that we have <math>\frac{c}{z}</math>~<math>3</math> and <math>\frac{y}{z}</math>~<math>0</math>. Note that <math>f(z)=0</math>. Now, <math>x=z, y=c \implies</math> LHS is positive, as the second term is positive and the first term is nonnegative and thus the right term is equal to <math>(z+c)^{4}</math>~<math>256z^{4}</math>. Now if <math>f(z-3c)=0</math>, the second term of the LHS/RHS clearly ~0 as <math>m \to \infty</math>. if <math>f(z-3c)=0</math>, then we have LHS/RHS ~ <math>0</math>, otherwise, we have LHS/RHS~<math>\frac{8^{2}\cdot 3z^{4}}{256z^{4}}</math>~<math>\frac{3}{4}</math>, a contradiction, as we're clearly not dividing by <math>0</math>, and we should have LHS/RHS=1.
 
  
 +
Step 5: We now assume </math>f(x)=0<math>, </math>f(y)=y^{2}<math> for some </math>x,y \not = 0<math>. Let </math>m<math> be sufficiently large integer, let </math>z=|4^{m}x|<math> and take the absolute value of </math>y<math>(since the function is even). Choose </math>c<math> such that </math>3z-c=y<math>. Note that we have </math>\frac{c}{z}<math>~</math>3<math> and </math>\frac{y}{z}<math>~</math>0<math>. Note that </math>f(z)=0<math>. Now, </math>x=z, y=c \implies<math> LHS is positive, as the second term is positive and the first term is nonnegative and thus the right term is equal to </math>(z+c)^{4}<math>~</math>256z^{4}<math>. Now if </math>f(z-3c)=0<math>, the second term of the LHS/RHS clearly ~0 as </math>m \to \infty<math>. if </math>f(z-3c)=0<math>, then we have LHS/RHS ~ </math>0<math>, otherwise, we have LHS/RHS~</math>\frac{8^{2}\cdot 3z^{4}}{256z^{4}}<math>~</math>\frac{3}{4}<math>, a contradiction, as we're clearly not dividing by </math>0$, and we should have LHS/RHS=1.
  
  

Revision as of 22:17, 3 January 2019

Problem

Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for all real numbers $x$ and $y$, \[(f(x)+xy)\cdot f(x-3y)+(f(y)+xy)\cdot f(3x-y)=(f(x+y))^2.\]

Solution 1

Step 1: Set $x = y = 0$ to obtain $f(0) = 0.$

Step 2: Set $x = 0$ to obtain $f(y)f(-y) = f(y)^2.$

$\indent$ In particular, if $f(y) \ne 0$ then $f(y) = f(-y).$

$\indent$ In addition, replacing $y \to -t$, it follows that $f(t) = 0 \implies f(-t) = 0$ for all $t \in \mathbb{R}.$

Step 3: Set $x = 3y$ to obtain $\left[f(y) + 3y^2\right]f(8y) = f(4y)^2.$

$\indent$ In particular, replacing $y \to t/8$, it follows that $f(t) = 0 \implies f(t/2) = 0$ for all $t \in \mathbb{R}.$

Step 4: Set $y = -x$ to obtain $f(4x)\left[f(x) + f(-x) - 2x^2\right] = 0.$

$\indent$ In particular, if $f(x) \ne 0$, then $f(4x) \ne 0$ by the observation from Step 3, because $f(4x) = 0 \implies f(2x) = 0 \implies f(x) = 0.$ Hence, the above equation implies that $2x^2 = f(x) + f(-x) = 2f(x)$, where the last step follows from the first observation from Step 2.

$\indent$ Therefore, either $f(x) = 0$ or $f(x) = x^2$ for each $x.$

$\indent$ Looking back on the equation from Step 3, it follows that $f(y) + 3y^2 \ne 0$ for any nonzero $y.$ Therefore, replacing $y \to t/4$ in this equation, it follows that $f(t) = 0 \implies f(2t) = 0.$

Step 5: If $f(a) = f(b) = 0$, then $f(b - a) = 0.$

$\indent$ This follows by choosing $x, y$ such that $x - 3y = a$ and $3x - y = b.$ Then $x + y = \tfrac{b - a}{2}$, so plugging $x, y$ into the given equation, we deduce that $f\left(\tfrac{b - a}{2}\right) = 0.$ Therefore, by the third observation from Step 4, we obtain $f(b - a) = 0$, as desired.

Step 6: If $f \not\equiv 0$, then $f(t) = 0 \implies t = 0.$

$\indent$ Suppose by way of contradiction that there exists an nonzero $t$ with $f(t) = 0.$ Choose $x, y$ such that $f(x) \ne 0$ and $x + y = t.$ The following three facts are crucial:

$\indent$ 1. $f(y) \ne 0.$ This is because $(x + y) - y = x$, so by Step 5, $f(y) = 0 \implies f(x) = 0$, impossible.

$\indent$ 2. $f(x - 3y) \ne 0.$ This is because $(x + y) - (x - 3y) = 4y$, so by Step 5 and the observation from Step 3, $f(x - 3y) = 0 \implies f(4y) = 0 \implies f(2y) = 0 \implies f(y) = 0$, impossible.

$\indent$ 3. $f(3x - y) \ne 0.$ This is because by the second observation from Step 2, $f(3x - y) = 0 \implies f(y - 3x) = 0.$ Then because $(x + y) - (y - 3x) = 4x$, Step 5 together with the observation from Step 3 yield $f(3x - y) = 0 \implies f(4x) = 0 \implies f(2x) = 0 \implies f(x) = 0$, impossible.

$\indent$ By the second observation from Step 4, these three facts imply that $f(y) = y^2$ and $f(x - 3y) = \left(x - 3y\right)^2$ and $f(3x - y) = \left(3x - y\right)^2.$ By plugging into the given equation, it follows that \begin{align*} \left(x^2 + xy\right)\left(x - 3y\right)^2 + \left(y^2 + xy\right)\left(3x - y\right)^2 = 0. \end{align*} But the above expression miraculously factors into $\left(x + y\right)^4$! This is clearly a contradiction, since $t = x + y \ne 0$ by assumption. This completes Step 6.

Step 7: By Step 6 and the second observation from Step 4, the only possible solutions are $f \equiv 0$ and $f(x) = x^2$ for all $x \in \mathbb{R}.$ It's easy to check that both of these work, so we're done.

Alternate Solution 1

From steps 1 and 2 we have that, setting $x=y=0$, $f(0)=0$, and, setting $x=0$, $f(-y)f(y)=(f(y))^2$, so if $f(y) \ne 0$, then $f(y)=f(-y)$. Furthermore, setting $y=-x$ gives us $(f(x)-x^2) \cdot f(4x) + (f(-x)-x^2) \cdot f(4x) = f(0) = 0$. The LHS can be factored as $(f(x)+f(-x)-2x^2) \cdot f(4x) = 0$. Therefore, if $f(4x) \ne 0$, then we have $f(x)+f(-x)-2x^2=0$, or $f(x)+f(-x)=2x^2$. However, since from step 2 we have that $f(x)=f(-x)$ assuming f(x) \ne 0$, the equation becomes$2f(x)=2x^2$, so$f(x)=0, x^2$are the only solutions.  ==Solution 2== Step 1:$x=y=0 \implies f(0)=0$Step 2:$x=0 \implies f(y)f(-y)=f(y)^{2}$. Now, assume$y \not = 0$. Then, if$f(y)=0$, we substitute in$-y$to get$f(y)f(-y)=f(-y)^{2}$, or$f(y)=f(-y)=0$. Otherwise, we divide both sides by$f(y)$to get$f(y)=f(-y)$. If$y=0$, we obviously have$f(0)=f(0)$. Thus, the function is even. . Step 3:$y=-x \implies 2f(4x)(f(x)-x^{2})=0$. Thus,$\forall x$, we have$f(4x)=0$or$f(x)=x^{2}$.

Step 4: We now assume$ (Error compiling LaTeX. Unknown error_msg)f(x) \not = 0$,$x\not = 0$. We have$f(\frac{x}{4})=\frac{x^{2}}{16}$. Now, setting$x=y=\frac{x}{4}$, we have$f(\frac{x}{2}=\frac{x^{2}}{4}$or$f(\frac{x}{2})=0$. The former implies that$f(x)=0$or$x^{2}$. The latter implies that$f(x)=0$or$f(x)=\frac{x^{2}}{2}$. Assume the latter.$y=-2x \implies -\frac{3y^{2}}{2}f(7y)-{2y^{2}}f(5y)=\frac{x^{2}}{2}$. Clearly, this implies that$f(x)$is negative for some$m$. Now, we have$f(\frac{m}{4})=\frac{m^{2}}{16} \implies f(\frac{m}{2})=0,\frac{m^{2}}{4} \implies f(m) \geq 0$, which is a contradiction. Thus,$\forall x$$ (Error compiling LaTeX. Unknown error_msg)f(x)=0$or$f(x)=x^{2}$.

Step 5: We now assume$ (Error compiling LaTeX. Unknown error_msg)f(x)=0$,$f(y)=y^{2}$for some$x,y \not = 0$. Let$m$be sufficiently large integer, let$z=|4^{m}x|$and take the absolute value of$y$(since the function is even). Choose$c$such that$3z-c=y$. Note that we have$\frac{c}{z}$~$3$and$\frac{y}{z}$~$0$. Note that$f(z)=0$. Now,$x=z, y=c \implies$LHS is positive, as the second term is positive and the first term is nonnegative and thus the right term is equal to$(z+c)^{4}$~$256z^{4}$. Now if$f(z-3c)=0$, the second term of the LHS/RHS clearly ~0 as$m \to \infty$. if$f(z-3c)=0$, then we have LHS/RHS ~$0$, otherwise, we have LHS/RHS~$\frac{8^{2}\cdot 3z^{4}}{256z^{4}}$~$\frac{3}{4}$, a contradiction, as we're clearly not dividing by$0$, and we should have LHS/RHS=1.


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

See also

2016 USAMO (ProblemsResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6
All USAMO Problems and Solutions
2016 USAJMO (ProblemsResources)
Preceded by
Problem 5
Last Problem
1 2 3 4 5 6
All USAJMO Problems and Solutions