Difference between revisions of "2017 AIME II Problems/Problem 10"

m (Solution 2 (No Coordinates))
 
(16 intermediate revisions by 11 users not shown)
Line 2: Line 2:
 
Rectangle <math>ABCD</math> has side lengths <math>AB=84</math> and <math>AD=42</math>. Point <math>M</math> is the midpoint of <math>\overline{AD}</math>, point <math>N</math> is the trisection point of <math>\overline{AB}</math> closer to <math>A</math>, and point <math>O</math> is the intersection of <math>\overline{CM}</math> and <math>\overline{DN}</math>. Point <math>P</math> lies on the quadrilateral <math>BCON</math>, and <math>\overline{BP}</math> bisects the area of <math>BCON</math>. Find the area of <math>\triangle CDP</math>.
 
Rectangle <math>ABCD</math> has side lengths <math>AB=84</math> and <math>AD=42</math>. Point <math>M</math> is the midpoint of <math>\overline{AD}</math>, point <math>N</math> is the trisection point of <math>\overline{AB}</math> closer to <math>A</math>, and point <math>O</math> is the intersection of <math>\overline{CM}</math> and <math>\overline{DN}</math>. Point <math>P</math> lies on the quadrilateral <math>BCON</math>, and <math>\overline{BP}</math> bisects the area of <math>BCON</math>. Find the area of <math>\triangle CDP</math>.
  
==Solution==
+
==Solution 1==
 
<asy>
 
<asy>
 
pair A,B,C,D,M,n,O,P;
 
pair A,B,C,D,M,n,O,P;
 
A=(0,42);B=(84,42);C=(84,0);D=(0,0);M=(0,21);n=(28,42);O=(12,18);P=(32,13);
 
A=(0,42);B=(84,42);C=(84,0);D=(0,0);M=(0,21);n=(28,42);O=(12,18);P=(32,13);
fill(C--D--P--cycle,lightgray);
+
fill(C--D--P--cycle,blue);
 
draw(A--B--C--D--cycle);
 
draw(A--B--C--D--cycle);
 
draw(C--M);
 
draw(C--M);
Line 31: Line 31:
 
label("56",(28,42)--(84,42),N);
 
label("56",(28,42)--(84,42),N);
 
</asy>
 
</asy>
<math>\boxed{546}</math>
+
Impose a coordinate system on the diagram where point <math>D</math> is the origin. Therefore <math>A=(0,42)</math>, <math>B=(84,42)</math>, <math>C=(84,0)</math>, and <math>D=(0,0)</math>. Because <math>M</math> is a midpoint and <math>N</math> is a trisection point, <math>M=(0,21)</math> and <math>N=(28,42)</math>. The equation for line <math>DN</math> is <math>y=\frac{3}{2}x</math> and the equation for line <math>CM</math> is <math>\frac{1}{84}x+\frac{1}{21}y=1</math>, so their intersection, point <math>O</math>, is <math>(12,18)</math>. Using the shoelace formula on quadrilateral <math>BCON</math>, or drawing diagonal <math>\overline{BO}</math> and using <math>\frac12bh</math>, we find that its area is <math>2184</math>. Therefore the area of triangle <math>BCP</math> is <math>\frac{2184}{2} = 1092</math>. Using <math>A = \frac 12 bh</math>, we get <math>2184 = 42h</math>. Simplifying, we get <math>h = 52</math>. This means that the x-coordinate of <math>P = 84 - 52 = 32</math>. Since P lies on <math>\frac{1}{84}x+\frac{1}{21}y=1</math>, you can solve and get that the y-coordinate of <math>P</math> is <math>13</math>. Therefore the area of <math>CDP</math> is <math>\frac{1}{2} \cdot 13 \cdot 84=\boxed{546}</math>.
 +
 
 +
==Solution 2 (No Coordinates)==
 +
Since the problem tells us that segment <math>\overline{BP}</math> bisects the area of quadrilateral <math>BCON</math>, let us compute the area of <math>BCON</math> by subtracting the areas of <math>\triangle{AND}</math> and <math>\triangle{DOC}</math> from rectangle <math>ABCD</math>.
 +
 
 +
To do this, drop altitude <math>\overline{OE}</math> onto side <math>\overline{DC}</math> and draw a segment <math>\overline{MQ}</math> parallel to <math>\overline{AN}</math> from side <math>\overline{AD}</math> to <math>\overline{ND}</math>. Since <math>M</math> is the midpoint of side <math>\overline{AD}</math>, <cmath>\overline{MQ}=14</cmath> Denote <math>\overline{OE}</math> as <math>a</math>. Noting that <math>\triangle{MOQ}~\triangle{COD}</math>, we can write the statement <cmath>\frac{\overline{DC}}{a}=\frac{\overline{MQ}}{21-a}</cmath> <cmath>\implies \frac{84}{a}=\frac{14}{21-a}</cmath> <cmath>\implies a=18</cmath> Using this information, the area of <math>\triangle{DOC}</math> and <math>\triangle{AND}</math> are <cmath>\frac{18\cdot 84}{2}=756</cmath> and <cmath>\frac{28\cdot 42}{2}=588</cmath> respectively. Thus, the area of quadrilateral <math>BCON</math> is <cmath>84\cdot 42-588-756=2184</cmath> Now, it is clear that point <math>P</math> lies on side <math>\overline{MC}</math>, so the area of <math>\triangle{BPC}</math> is <cmath>\frac{2184}{2}=1092</cmath> Given this, drop altitude <math>\overline{PF}</math> (let's call it <math>b</math>) onto <math>\overline{BC}</math>. Therefore, <cmath>\frac{42b}{2}=1092\implies b=52</cmath> From here, drop an altitude <math>\overline{PG}</math> onto <math>\overline{DC}</math>. Recognizing that <math>\overline{PF}=\overline{GC}</math> and that <math>\triangle{MDC}</math> and <math>\triangle{PGC}</math> are similar, we write <cmath>\frac{\overline{PG}}{\overline{GC}}=\frac{\overline{MD}}{\overline{DC}}</cmath> <cmath>\implies \frac{\overline{PG}}{52}=\frac{21}{84}</cmath> <cmath>\implies \overline{PG}=13</cmath> The area of <math>\triangle{CDP}</math> is given by <cmath>\frac{\overline{DC}\cdot \overline{PG}}{2}=\frac{84\cdot 13}{2}=\boxed{546}</cmath> ~blitzkrieg21 and jdong2006
  
 
=See Also=
 
=See Also=
 
{{AIME box|year=2017|n=II|num-b=9|num-a=11}}
 
{{AIME box|year=2017|n=II|num-b=9|num-a=11}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 00:21, 27 January 2023

Problem

Rectangle $ABCD$ has side lengths $AB=84$ and $AD=42$. Point $M$ is the midpoint of $\overline{AD}$, point $N$ is the trisection point of $\overline{AB}$ closer to $A$, and point $O$ is the intersection of $\overline{CM}$ and $\overline{DN}$. Point $P$ lies on the quadrilateral $BCON$, and $\overline{BP}$ bisects the area of $BCON$. Find the area of $\triangle CDP$.

Solution 1

[asy] pair A,B,C,D,M,n,O,P; A=(0,42);B=(84,42);C=(84,0);D=(0,0);M=(0,21);n=(28,42);O=(12,18);P=(32,13); fill(C--D--P--cycle,blue); draw(A--B--C--D--cycle); draw(C--M); draw(D--n); draw(B--P); draw(D--P); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("$M$",M,W); label("$N$",n,N); label("$O$",O,(-0.5,1)); label("$P$",P,N); dot(A); dot(B); dot(C); dot(D); dot(M); dot(n); dot(O); dot(P); label("28",(0,42)--(28,42),N); label("56",(28,42)--(84,42),N); [/asy] Impose a coordinate system on the diagram where point $D$ is the origin. Therefore $A=(0,42)$, $B=(84,42)$, $C=(84,0)$, and $D=(0,0)$. Because $M$ is a midpoint and $N$ is a trisection point, $M=(0,21)$ and $N=(28,42)$. The equation for line $DN$ is $y=\frac{3}{2}x$ and the equation for line $CM$ is $\frac{1}{84}x+\frac{1}{21}y=1$, so their intersection, point $O$, is $(12,18)$. Using the shoelace formula on quadrilateral $BCON$, or drawing diagonal $\overline{BO}$ and using $\frac12bh$, we find that its area is $2184$. Therefore the area of triangle $BCP$ is $\frac{2184}{2} = 1092$. Using $A = \frac 12 bh$, we get $2184 = 42h$. Simplifying, we get $h = 52$. This means that the x-coordinate of $P = 84 - 52 = 32$. Since P lies on $\frac{1}{84}x+\frac{1}{21}y=1$, you can solve and get that the y-coordinate of $P$ is $13$. Therefore the area of $CDP$ is $\frac{1}{2} \cdot 13 \cdot 84=\boxed{546}$.

Solution 2 (No Coordinates)

Since the problem tells us that segment $\overline{BP}$ bisects the area of quadrilateral $BCON$, let us compute the area of $BCON$ by subtracting the areas of $\triangle{AND}$ and $\triangle{DOC}$ from rectangle $ABCD$.

To do this, drop altitude $\overline{OE}$ onto side $\overline{DC}$ and draw a segment $\overline{MQ}$ parallel to $\overline{AN}$ from side $\overline{AD}$ to $\overline{ND}$. Since $M$ is the midpoint of side $\overline{AD}$, \[\overline{MQ}=14\] Denote $\overline{OE}$ as $a$. Noting that $\triangle{MOQ}~\triangle{COD}$, we can write the statement \[\frac{\overline{DC}}{a}=\frac{\overline{MQ}}{21-a}\] \[\implies \frac{84}{a}=\frac{14}{21-a}\] \[\implies a=18\] Using this information, the area of $\triangle{DOC}$ and $\triangle{AND}$ are \[\frac{18\cdot 84}{2}=756\] and \[\frac{28\cdot 42}{2}=588\] respectively. Thus, the area of quadrilateral $BCON$ is \[84\cdot 42-588-756=2184\] Now, it is clear that point $P$ lies on side $\overline{MC}$, so the area of $\triangle{BPC}$ is \[\frac{2184}{2}=1092\] Given this, drop altitude $\overline{PF}$ (let's call it $b$) onto $\overline{BC}$. Therefore, \[\frac{42b}{2}=1092\implies b=52\] From here, drop an altitude $\overline{PG}$ onto $\overline{DC}$. Recognizing that $\overline{PF}=\overline{GC}$ and that $\triangle{MDC}$ and $\triangle{PGC}$ are similar, we write \[\frac{\overline{PG}}{\overline{GC}}=\frac{\overline{MD}}{\overline{DC}}\] \[\implies \frac{\overline{PG}}{52}=\frac{21}{84}\] \[\implies \overline{PG}=13\] The area of $\triangle{CDP}$ is given by \[\frac{\overline{DC}\cdot \overline{PG}}{2}=\frac{84\cdot 13}{2}=\boxed{546}\] ~blitzkrieg21 and jdong2006

See Also

2017 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png