Difference between revisions of "2017 AIME I Problems/Problem 4"
(→Solution) |
m (→Solution) |
||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | Let the triangular base be <math>\triangle ABC</math>, with <math>\overline {AB} = 24</math>. We find that the altitude to side <math>AB</math> is <math>16</math>, so the area of <math>\triangle ABC</math> is <math>(24*16)/2 = 192</math>. | + | Let the triangular base be <math>\triangle ABC</math>, with <math>\overline {AB} = 24</math>. We find that the altitude to side <math>\overline {AB}</math> is <math>16</math>, so the area of <math>\triangle ABC</math> is <math>(24*16)/2 = 192</math>. |
Let the fourth vertex of the tetrahedron be <math>P</math>, and let the midpoint of <math>\overline {AB}</math> be <math>M</math>. Since <math>P</math> is equidistant from <math>A</math>, <math>B</math>, and <math>C</math>, the line through <math>P</math> perpendicular to the plane of <math>\triangle ABC</math> will pass through the circumcenter of <math>\triangle ABC</math>, which we will call <math>O</math>. Note that <math>O</math> is equidistant from each of <math>A</math>, <math>B</math>, and <math>C</math>. Then, | Let the fourth vertex of the tetrahedron be <math>P</math>, and let the midpoint of <math>\overline {AB}</math> be <math>M</math>. Since <math>P</math> is equidistant from <math>A</math>, <math>B</math>, and <math>C</math>, the line through <math>P</math> perpendicular to the plane of <math>\triangle ABC</math> will pass through the circumcenter of <math>\triangle ABC</math>, which we will call <math>O</math>. Note that <math>O</math> is equidistant from each of <math>A</math>, <math>B</math>, and <math>C</math>. Then, |
Revision as of 20:11, 20 March 2017
Problem 4
A pyramid has a triangular base with side lengths ,
, and
. The three edges of the pyramid from the three corners of the base to the fourth vertex of the pyramid all have length
. The volume of the pyramid is
, where
and
are positive integers, and
is not divisible by the square of any prime. Find
.
Solution
Let the triangular base be , with
. We find that the altitude to side
is
, so the area of
is
.
Let the fourth vertex of the tetrahedron be , and let the midpoint of
be
. Since
is equidistant from
,
, and
, the line through
perpendicular to the plane of
will pass through the circumcenter of
, which we will call
. Note that
is equidistant from each of
,
, and
. Then,
Let .
Equation
:
Squaring both sides, we have
Substituting with equation :
We now find that .
Let the distance . Using the Pythagorean Theorem on triangle
,
, or
(all three are congruent by SSS):
Finally, by the formula for volume of a pyramid,
This simplifies to
, so
.
Solution by Zeroman
See Also
2017 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.