# Difference between revisions of "2017 AMC 10A Problems/Problem 14"

## Problem

Every week Roger pays for a movie ticket and a soda out of his allowance. Last week, Roger's allowance was $A$ dollars. The cost of his movie ticket was $20\%$ of the difference between $A$ and the cost of his soda, while the cost of his soda was $5\%$ of the difference between $A$ and the cost of his movie ticket. To the nearest whole percent, what fraction of $A$ did Roger pay for his movie ticket and soda?

$\mathrm{\bold{(A)} \ }9\%\qquad \mathrm{\bold{(B)} \ } 19\%\qquad \mathrm{\bold{(C)} \ } 22\%\qquad \mathrm{\bold{(D)} \ } 23\%\qquad \mathrm{\bold{(E)} \ }25\%$

## Solution

Let $m$ = cost of movie ticket
Let $s$ = cost of soda

We can create two equations:

$m = \frac{1}{5}(A - s)$

$s = \frac{1}{20}(A - m)$

Substituting we get:

$m = \frac{1}{5}(A - \frac{1}{20}(A - m))$

which yields:
$m = \frac{19}{99}A$

Now we can find s and we get:

$s = \frac{4}{99}A$

Since we want to find what fraction of $A$ did Roger pay for his movie ticket and soda, we add $m$ and $s$ to get:

$\frac{19}{99}A + \frac{4}{99}A \implies \boxed{\textbf{(D)}\ 23\%}$