# Difference between revisions of "2017 AMC 10A Problems/Problem 2"

## Problem

Pablo buys popsicles for his friends. The store sells single popsicles for $1 each, 3-popsicle boxes for$2 each, and 5-popsicle boxes for $3. What is the greatest number of popsicles that Pablo can buy with$8?

$\textbf{(A)}\ 8\qquad\textbf{(B)}\ 11\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 13\qquad\textbf{(E)}\ 15$

## Solution

$3 boxes give us the most popsicles/dollar, so we want to buy as many of those as possible. After buying 2, we have$2 left. We cannot buy a third $3 box, so we opt for the$2 box instead (since it has a higher popsicles/dollar ratio than the \$1 pack). We're now out of money. We bought $5+5+2=12$ popsicles, so the answer is $\boxed{(\textbf{C})}$.

 2017 AMC 10A (Problems • Answer Key • Resources) Preceded byProblem 1 Followed byProblem 3 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions