Difference between revisions of "2017 AMC 10A Problems/Problem 24"

(Start of Solution)
m (Solution)
Line 16: Line 16:
  
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
a-r=1\\
+
a-r&=1\\
1-ar=b\\
+
1-ar&=b\\
10-r=100\\
+
10-r&=100\\
-10r=c\\
+
-10r&=c\\
 
\end{align*}</cmath>
 
\end{align*}</cmath>

Revision as of 17:31, 8 February 2017

Problem

For certain real numbers $a$, $b$, and $c$, the polynomial \[g(x) = x^3 + ax^2 + x + 10\]has three distinct roots, and each root of $g(x)$ is also a root of the polynomial \[f(x) = x^4 + x^3 + bx^2 + 100x + c.\]What is $f(1)$?

$\textbf{(A)}\ -9009 \qquad\textbf{(B)}\ -8008 \qquad\textbf{(C)}\ -7007 \qquad\textbf{(D)}\ -6006 \qquad\textbf{(E)}\ -5005$

Solution

$f(x)$ must have four roots, three of which are roots of $g(x)$. Using the fact that every polynomial has a unique factorization into its roots, and since the leading coefficient of $f(x)$ and $g(x)$ are the same, we know that

\[f(x)=g(x)(x-r)\]

where $r\in\mathbb{C}$ is the fourth root of $f(x)$. Substituting $g(x)$ and expanding, we find that

\[f(x)=(x^3+ax^2+x+10)(x-r)=x^4+(a-r)x^3+(1-ar)x^2+(10-r)x-10r.\]

Comparing coefficients with $f(x)$, we see that

\begin{align*} a-r&=1\\ 1-ar&=b\\ 10-r&=100\\ -10r&=c\\ \end{align*}