Difference between revisions of "2017 AMC 10A Problems/Problem 25"

(Solution 4: Slightly Adjusted Version of Solution 2)
m (Solution 2)
(27 intermediate revisions by 11 users not shown)
Line 5: Line 5:
  
 
==Solution 1==
 
==Solution 1==
 +
There are 81 multiples of 11. Some have digits repeated twice, making 3 permutations.
 +
 +
Others that have no repeated digits have 6 permutations, but switching the hundreds and units digits also yield a multiple of 11. Therefore, assign 3 permutations to each multiple.
 +
 +
There are now 81*3 = 243 permutations, but we have overcounted*. Some multiples of 11 have a zero, and we must subtract a permutation for each.
 +
 +
There are 110, 220, 330 ... 990, yielding 9 extra permutations
 +
 +
Also, there are 209, 308, 407...902, yielding 8 more permutations.
 +
 +
Now, just subtract these 17 from the total (243), getting 226. <math>\boxed{\textbf{(A) } 226}</math>
 +
 +
*Note: If short on time, note that 226 is the only answer choice less than 243, and therefore is the only feasible answer.
 +
 +
==Solution 2==
  
 
Let the three-digit number be <math>ACB</math>:
 
Let the three-digit number be <math>ACB</math>:
Line 13: Line 28:
 
<math>A+B=C</math> and <math>A+B=C+11</math>
 
<math>A+B=C</math> and <math>A+B=C+11</math>
  
We now proceed to break down the cases. Note: let <math>A \geq C</math> so that we avoid counting the same permutations and having to subtract them later.
+
We now proceed to break down the cases. Note: let <math>A \geq B</math> so that we avoid counting the same permutations and having to subtract them later.
  
  
Line 20: Line 35:
  
  
<math>\textbf{Part 1}</math>: <math>B=0, A=C</math>, this case results in 110, 220, 330...990. There are two ways to arrange the digits in each of those numbers.
+
<math>\textbf{Part 1}</math>: <math>B=0, A=C</math>, this case results in <math>110, 220, 330...990</math>. There are two ways to arrange the digits in each of those numbers.
 
<math>2 \cdot 9 = 18</math>
 
<math>2 \cdot 9 = 18</math>
  
 
<math>\textbf{Part 2}</math>:
 
<math>\textbf{Part 2}</math>:
<math>B=1, A+1=C</math>, this case results in 121, 231,... 891. There are <math>6</math> ways to arrange the digits in all of those number except the first, and 3 ways for the first. This leads to <math>45</math> cases.
+
<math>B=1, A+1=C</math>, this case results in <math>121, 231,... 891</math>. There are <math>6</math> ways to arrange the digits in all of those number except the first, and <math>3</math> ways for the first. This leads to <math>45</math> cases.
  
<math>\textbf{Part 3}</math>: <math>B=2, A+2=C</math>, this case results in 242, 352,... 792. There are <math>6</math> ways to arrange the digits in all of those number except the first, and 3 ways for the first. This leads to <math>33</math> cases.
+
<math>\textbf{Part 3}</math>: <math>B=2, A+2=C</math>, this case results in <math>242, 352,... 792</math>. There are <math>6</math> ways to arrange the digits in all of those number except the first, and 3 ways for the first. This leads to <math>33</math> cases.
  
<math>\textbf{Part 4}</math>: <math>B=3, A+3=C</math>, this case results in 363, 473,...693. There are <math>6</math> ways to arrange the digits in all of those number except the first, and 3 ways for the first. This leads to <math>21</math> cases.
+
<math>\textbf{Part 4}</math>: <math>B=3, A+3=C</math>, this case results in <math>363, 473,...693</math>. There are <math>6</math> ways to arrange the digits in all of those number except the first, and 3 ways for the first. This leads to <math>21</math> cases.
  
<math>\textbf{Part 5}</math>: <math>B=4, A+4=C</math>, this case results in 484 and 594. There are <math>6</math> ways to arrange the digits in 594 and 3 ways for 484. This leads to <math>9</math> cases.
+
<math>\textbf{Part 5}</math>: <math>B=4, A+4=C</math>, this case results in <math>484</math> and <math>594</math>. There are <math>6</math> ways to arrange the digits in 594 and 3 ways for 484. This leads to <math>9</math> cases.
  
 
This case has <math>18+45+33+21+9=126</math> subcases.
 
This case has <math>18+45+33+21+9=126</math> subcases.
Line 39: Line 54:
  
  
<math>\textbf{Part 1}</math>: <math>C=0, A+B=11</math>, this cases results in 209, 308, 407, 506. There are <math>4</math> ways to arrange each of those cases. This leads to <math>16</math> cases.
+
<math>\textbf{Part 1}</math>: <math>C=0, A+B=11</math>, this cases results in <math>209, 308, 407, 506</math>. There are <math>4</math> ways to arrange each of those cases. This leads to <math>16</math> cases.
  
<math>\textbf{Part 2}</math>: <math>C=1, A+B=12</math>, this cases results in 319, 418,517,616. There are <math>6</math> ways to arrange each of those cases, except the last. This leads to <math>21</math> cases.
+
<math>\textbf{Part 2}</math>: <math>C=1, A+B=12</math>, this cases results in <math>319, 418,517,616</math>. There are <math>6</math> ways to arrange each of those cases, except the last. This leads to <math>21</math> cases.
  
<math>\textbf{Part 3}</math>: <math>C=2, A+B=13</math>, this cases results in 429, 528, 627. There are <math>6</math> ways to arrange each of those cases. This leads to <math>18</math> cases.
+
<math>\textbf{Part 3}</math>: <math>C=2, A+B=13</math>, this cases results in <math>429, 528, 627</math>. There are <math>6</math> ways to arrange each of those cases. This leads to <math>18</math> cases.
  
 
...
 
...
Line 50: Line 65:
 
<math>100+126=\boxed{\textbf{(A) } 226}</math>
 
<math>100+126=\boxed{\textbf{(A) } 226}</math>
  
==Solution 2==
+
==Solution 3==
  
We note that we only have to consider multiples of 11 and see how many valid permutations each has. We can do casework on the number of repeating digits that the multiple of 11 has:
+
We note that we only have to consider multiples of <math>11</math> and see how many valid permutations each has. We can do casework on the number of repeating digits that the multiple of <math>11</math> has:
  
 
<math>\textbf{Case 1:}</math> All three digits are the same.  
 
<math>\textbf{Case 1:}</math> All three digits are the same.  
By inspection, we find that there are no multiples of 11 here.
+
By inspection, we find that there are no multiples of <math>11</math> here.
  
 
<math>\textbf{Case 2:}</math> Two of the digits are the same, and the third is different.
 
<math>\textbf{Case 2:}</math> Two of the digits are the same, and the third is different.
  
 
<math>\textbf{Case 2a:}</math>
 
<math>\textbf{Case 2a:}</math>
There are 8 multiples of 11 without a zero that have this property:
+
There are <math>8</math> multiples of <math>11</math> without a zero that have this property:
121, 242, 363, 484, 616, 737, 858, 979.
+
<math>121</math>, <math>242</math>, <math>363</math>, <math>484</math>, <math>616</math>, <math>737</math>, <math>858</math>, <math>979</math>.
Each contributes 3 valid permutations, so there are <math>8 \cdot 3 = 24</math> permutations in this subcase.
+
Each contributes <math>3</math> valid permutations, so there are <math>8 \cdot 3 = 24</math> permutations in this subcase.
  
 
<math>\textbf{Case 2b:}</math>
 
<math>\textbf{Case 2b:}</math>
There are 9 multiples of 11 with a zero that have this property:
+
There are <math>9</math> multiples of <math>11</math> with a zero that have this property:
110, 220, 330, 440, 550, 660, 770, 880, 990.
+
<math>110</math>, <math>220</math>, <math>330</math>, <math>440</math>, <math>550</math>, <math>660</math>, <math>770</math>, <math>880</math>, <math>990</math>.
Each one contributes 2 valid permutations (the first digit can't be zero), so there are <math>9 \cdot 2 = 18</math> permutations in this subcase.
+
Each one contributes <math>2</math> valid permutations (the first digit can't be zero), so there are <math>9 \cdot 2 = 18</math> permutations in this subcase.
  
 
<math>\textbf{Case 3:}</math> All the digits are different.
 
<math>\textbf{Case 3:}</math> All the digits are different.
Since there are <math>\frac{990-110}{11}+1 = 81</math> multiples of 11 between 100 and 999, there are <math>81-8-9 = 64</math> multiples of 11 remaining in this case. However, 8 of them contain a zero, namely 209, 308, 407, 506, 605, 704, 803, and 902. Each of those multiples of 11 contributes <math>2 \cdot 2=4</math> valid permutations, but we overcounted by a factor of 2; every permutation of 209, for example, is also a permutation of 902. Therefore, there are <math>8 \cdot 4 / 2 = 16</math>. Therefore, there are <math>64-8=56</math> remaining multiples of 11 without a 0 in this case. Each one contributes <math>3! = 6</math> valid permutations, but once again, we overcounted by a factor of 2 (note that if a number ABC is a multiple of 11, then so is CBA). Therefore, there are <math>56 \cdot 6 / 2 = 168</math> valid permutations in this subcase.
+
Since there are <math>\frac{990-110}{11}+1 = 81</math> multiples of <math>11</math> between <math>100</math> and <math>999</math>, there are <math>81-8-9 = 64</math> multiples of <math>11</math> remaining in this case. However, <math>8</math> of them contain a zero, namely <math>209</math>, <math>308</math>, <math>407</math>, <math>506</math>, <math>605</math>, <math>704</math>, <math>803</math>, and <math>902</math>. Each of those multiples of <math>11</math> contributes <math>2 \cdot 2=4</math> valid permutations, but we overcounted by a factor of <math>2</math>; every permutation of <math>209</math>, for example, is also a permutation of <math>902</math>. Therefore, there are <math>8 \cdot 4 / 2 = 16</math>. Therefore, there are <math>64-8=56</math> remaining multiples of <math>11</math> without a <math>0</math> in this case. Each one contributes <math>3! = 6</math> valid permutations, but once again, we overcounted by a factor of <math>2</math> (note that if a number ABC is a multiple of <math>11</math>, then so is CBA). Therefore, there are <math>56 \cdot 6 / 2 = 168</math> valid permutations in this subcase.
  
 
Adding up all the permutations from all the cases, we have <math>24+18+16+168 = \boxed{\textbf{(A) } 226}</math>.
 
Adding up all the permutations from all the cases, we have <math>24+18+16+168 = \boxed{\textbf{(A) } 226}</math>.
  
==Solution 3 ==
+
==Solution 4 ==
  
We can overcount and then subtract.
+
We can first overcount and then subtract.
We know there are <math>81</math> multiples of <math>11</math>.
+
We know that there are <math>81</math> multiples of <math>11</math>.
  
We can multiply by <math>6</math> for each permutation of these multiples. (Yet some multiples don't have 6)
+
We can then multiply by <math>6</math> for each permutation of these multiples. (Yet some multiples do not have six distinct permutations.)
  
Now divide by <math>2</math>, because if a number <math>abc</math> with digits <math>a</math>, <math>b</math>, and <math>c</math> is a multiple of 11, then <math>cba</math> is also a multiple of 11 so we have counted the same permutations twice.  
+
Now divide by <math>2</math>, because if a number <math>abc</math> with digits <math>a</math>, <math>b</math>, and <math>c</math> is a multiple of <math>11</math>, then <math>cba</math> is also a multiple of <math>11</math> so we have counted the same permutations twice.  
  
Basically, each multiple of 11 has its own 3 permutations (say <math>abc</math> has <math>abc</math> <math>acb</math> and <math>bac</math> whereas <math>cba</math> has <math>cba</math> <math>cab</math> and <math>bca</math>). We know that each multiple of 11 has at least 3 permutations because it cannot have 3 repeating digits.
+
Basically, each multiple of <math>11</math> has its own <math>3</math> permutations (say <math>abc</math> has <math>abc</math> <math>acb</math> and <math>bac</math> whereas <math>cba</math> has <math>cba</math> <math>cab</math> and <math>bca</math>). We know that each multiple of <math>11</math> has at least <math>3</math> permutations because it cannot have <math>3</math> repeating digits.
  
 
Hence we have <math>243</math> permutations without subtracting for overcounting.
 
Hence we have <math>243</math> permutations without subtracting for overcounting.
Now note that we overcounted cases in which we have 0's at the start of each number. So, in theory, we could just answer <math>A</math> and move on.
+
Now note that we overcounted cases in which we have <math>0</math>'s at the start of each number. So, in theory, we could just answer <math>A</math> and then move on.
  
 
If we want to solve it, then we continue.
 
If we want to solve it, then we continue.
  
We overcounted cases where the middle digit of the number is 0 and the last digit is 0.
+
We overcounted cases where the middle digit of the number is <math>0</math> and the last digit is <math>0</math>.
  
Note that we assigned each multiple of 11 3 permutations.
+
Note that we assigned each multiple of <math>11</math> three permutations.
  
 
The last digit is <math>0</math> gives <math>9</math> possibilities where we overcounted by <math>1</math> permutation for each of <math>110, 220, ... , 990</math>.
 
The last digit is <math>0</math> gives <math>9</math> possibilities where we overcounted by <math>1</math> permutation for each of <math>110, 220, ... , 990</math>.
  
The middle digit is 0 gives 8 possibilities where we overcount by 1.
+
The middle digit is <math>0</math> gives <math>8</math> possibilities where we overcount by <math>1</math>.
 
<math>605, 704, 803, 902</math> and <math>506, 407, 308, 209</math>
 
<math>605, 704, 803, 902</math> and <math>506, 407, 308, 209</math>
  
 
Subtracting <math>17</math> gives <math>\boxed{\textbf{(A) } 226}</math>.
 
Subtracting <math>17</math> gives <math>\boxed{\textbf{(A) } 226}</math>.
  
Now, we may ask if there is further overlap (I.e if two of <math>abc</math> and <math>bac</math> and <math>acb</math> were multiples of <math>11</math>) Thankfully, using divisibility rules, this can never happen as taking the divisibility rule mod 11 and adding we get that <math>2a</math>, <math>2b</math>, or <math>2c</math>  is congruent to <math>0\ (mod\ 11)</math>. Since <math>a, b, c</math> are digits, this can never happen as none of them can equal 11 and they can't equal 0 as they are the leading digit of a 3 digit number in each of the cases.
+
Now, we may ask if there is further overlap (i.e if two of <math>abc</math> and <math>bac</math> and <math>acb</math> were multiples of <math>11</math>). Thankfully, using divisibility rules, this can never happen, as taking the divisibility rule mod <math>11</math> and adding, we get that <math>2a</math>, <math>2b</math>, or <math>2c</math>  is congruent to <math>0\ (mod\ 11)</math>. Since <math>a, b, c</math> are digits, this can never happen as none of them can equal <math>11</math> and they can't equal <math>0</math> as they are the leading digit of a three-digit number in each of the cases.
 +
 
 +
== Solution 5: A Slightly Adjusted Version of Solution 2 ==
 +
 
  
 +
<math>\textbf{WARNING:}</math> If you do not feel comfortable looking at a massive amount of casework, please skip the solution.
  
== Solution 4: Slightly Adjusted Version of Solution 2 ==
 
  
 
Recalling the divisibility rule for <math>11</math>, if we have a number <math>ABC</math> where <math>A</math>, <math>B</math>, <math>C</math> are digits, then <math>11\mid -A+B-C</math>.
 
Recalling the divisibility rule for <math>11</math>, if we have a number <math>ABC</math> where <math>A</math>, <math>B</math>, <math>C</math> are digits, then <math>11\mid -A+B-C</math>.
Line 112: Line 130:
 
<math>\textbf{Case 1:}</math> <math>-A+B-C=0\Longrightarrow A+C=B</math>
 
<math>\textbf{Case 1:}</math> <math>-A+B-C=0\Longrightarrow A+C=B</math>
  
Case <math>1a</math>: <math>A\neq B\neq C</math>
+
Subcase <math>a</math>: <math>A\neq B\neq C\neq0</math>
  
We have these values for <math>A+B=C</math>
+
We have these values for <math>A+C=B</math>
 
<cmath>1+2=3,1+3=4,1+4=5,...,1+8=9</cmath>
 
<cmath>1+2=3,1+3=4,1+4=5,...,1+8=9</cmath>
 
<cmath>2+3=5,2+4=6,...,2+7=9</cmath>
 
<cmath>2+3=5,2+4=6,...,2+7=9</cmath>
Line 121: Line 139:
 
From which we get <math>7+5+3+1=16</math> triples <math>(A,B,C)</math>. Counting every permutation, we have <math>16\cdot3!=96</math> possibilities.
 
From which we get <math>7+5+3+1=16</math> triples <math>(A,B,C)</math>. Counting every permutation, we have <math>16\cdot3!=96</math> possibilities.
  
Case <math>1b</math>: <math>A=B</math>
+
Subcase <math>b</math>: <math>A=C</math>, <math>A,B,C\neq0</math>
 +
 
 
We have
 
We have
 
<cmath>1+1=2,2+2=4,3+3=6,4+4=8</cmath>
 
<cmath>1+1=2,2+2=4,3+3=6,4+4=8</cmath>
 
From which we get <math>4\cdot3=12</math> possibilities.
 
From which we get <math>4\cdot3=12</math> possibilities.
  
Case <math>1c</math>: <math>A=C,B=0</math>
+
Subcase <math>c</math>: <math>A=B,C=0</math>
we have
+
 
 +
We have
 
<cmath>1+0=1,2+0=2,...,9+0=9</cmath>
 
<cmath>1+0=1,2+0=2,...,9+0=9</cmath>
Since <math>0</math> can't be the hundreds digit, from here we get <math>9\cdot2=18</math> possibilities.
+
Since <math>0</math> can't be the hundreds digit, from here we get <math>9\cdot2=18</math> possibilities. Summing up case <math>1</math>, we have <math>96+12+18=126</math> possibilities.
 +
 
 +
<math>\textbf{Case 2:}</math> <math>-A+B-C=-11\Longrightarrow A+C-B=11</math>
 +
 
 +
Subcase <math>a</math>: <math>A\neq B\neq C\neq0</math>
 +
 
 +
We have these values for <math>A+C-B=11</math>
 +
<cmath>9+8-6=11,9+7-5=11,...9+3-1=11</cmath>
 +
<cmath>8+7-4=11,8+6-3=11,8+5-2=11,8+4-1</cmath>
 +
<cmath>...</cmath>
 +
From which we get <math>(6+4+2)\cdot3!=72</math> possibilities.
 +
 
 +
Subcase <math>b</math>: <math>A=C</math>, <math>A,B,C\neq0</math>
 +
 
 +
We have
 +
<cmath>9+9=7,8+8-5,7+7-3=11,6+6-1=11</cmath>
 +
From which we get <math>4\cdot3=12</math> possibilities.
 +
 
 +
Subcase <math>c</math>: <math>B=0\Longrightarrow A+C+11</math>
 +
 
 +
We have
 +
<cmath>9+2=8+3=7+4=6+5=11</cmath>
 +
From which we get <math>2\cdot2\cdot4=16</math> possibilities. Summing up case <math>2</math>, we have <math>72+12+16=100</math> possibilities.
 +
 
 +
Adding the <math>2</math> cases, we get a total of <math>126+100=226</math> possibilities. <math>\boxed{\mathrm{(A)}}</math>
 +
 
 +
~ Nafer
 +
 
 +
==Video Solution==
 +
Two different variations on solving it.
 +
https://youtu.be/z5KNZEwmrWM
 +
 
 +
https://youtu.be/MBcHwu30MX4
 +
-Video Solution by Richard Rusczyk
 +
 
 +
https://youtu.be/Ly69GHOq9Yw
 +
 
 +
~savannahsolver
  
 
==See Also==
 
==See Also==

Revision as of 17:57, 10 January 2021

Problem

How many integers between $100$ and $999$, inclusive, have the property that some permutation of its digits is a multiple of $11$ between $100$ and $999?$ For example, both $121$ and $211$ have this property.

$\mathrm{\textbf{(A)} \ }226\qquad \mathrm{\textbf{(B)} \ } 243 \qquad \mathrm{\textbf{(C)} \ } 270 \qquad \mathrm{\textbf{(D)} \ }469\qquad \mathrm{\textbf{(E)} \ } 486$

Solution 1

There are 81 multiples of 11. Some have digits repeated twice, making 3 permutations.

Others that have no repeated digits have 6 permutations, but switching the hundreds and units digits also yield a multiple of 11. Therefore, assign 3 permutations to each multiple.

There are now 81*3 = 243 permutations, but we have overcounted*. Some multiples of 11 have a zero, and we must subtract a permutation for each.

There are 110, 220, 330 ... 990, yielding 9 extra permutations

Also, there are 209, 308, 407...902, yielding 8 more permutations.

Now, just subtract these 17 from the total (243), getting 226. $\boxed{\textbf{(A) } 226}$

  • Note: If short on time, note that 226 is the only answer choice less than 243, and therefore is the only feasible answer.

Solution 2

Let the three-digit number be $ACB$:

If a number is divisible by $11$, then the difference between the sums of alternating digits is a multiple of $11$.

There are two cases: $A+B=C$ and $A+B=C+11$

We now proceed to break down the cases. Note: let $A \geq B$ so that we avoid counting the same permutations and having to subtract them later.


$\textbf{Case 1}$: $A+B=C$.


$\textbf{Part 1}$: $B=0, A=C$, this case results in $110, 220, 330...990$. There are two ways to arrange the digits in each of those numbers. $2 \cdot 9 = 18$

$\textbf{Part 2}$: $B=1, A+1=C$, this case results in $121, 231,... 891$. There are $6$ ways to arrange the digits in all of those number except the first, and $3$ ways for the first. This leads to $45$ cases.

$\textbf{Part 3}$: $B=2, A+2=C$, this case results in $242, 352,... 792$. There are $6$ ways to arrange the digits in all of those number except the first, and 3 ways for the first. This leads to $33$ cases.

$\textbf{Part 4}$: $B=3, A+3=C$, this case results in $363, 473,...693$. There are $6$ ways to arrange the digits in all of those number except the first, and 3 ways for the first. This leads to $21$ cases.

$\textbf{Part 5}$: $B=4, A+4=C$, this case results in $484$ and $594$. There are $6$ ways to arrange the digits in 594 and 3 ways for 484. This leads to $9$ cases.

This case has $18+45+33+21+9=126$ subcases.


$\textbf{Case 2}$: $A+B=C+11$.


$\textbf{Part 1}$: $C=0, A+B=11$, this cases results in $209, 308, 407, 506$. There are $4$ ways to arrange each of those cases. This leads to $16$ cases.

$\textbf{Part 2}$: $C=1, A+B=12$, this cases results in $319, 418,517,616$. There are $6$ ways to arrange each of those cases, except the last. This leads to $21$ cases.

$\textbf{Part 3}$: $C=2, A+B=13$, this cases results in $429, 528, 627$. There are $6$ ways to arrange each of those cases. This leads to $18$ cases.

... If we continue this counting, we receive $16+21+18+15+12+9+6+3=100$ subcases.

$100+126=\boxed{\textbf{(A) } 226}$

Solution 3

We note that we only have to consider multiples of $11$ and see how many valid permutations each has. We can do casework on the number of repeating digits that the multiple of $11$ has:

$\textbf{Case 1:}$ All three digits are the same. By inspection, we find that there are no multiples of $11$ here.

$\textbf{Case 2:}$ Two of the digits are the same, and the third is different.

$\textbf{Case 2a:}$ There are $8$ multiples of $11$ without a zero that have this property: $121$, $242$, $363$, $484$, $616$, $737$, $858$, $979$. Each contributes $3$ valid permutations, so there are $8 \cdot 3 = 24$ permutations in this subcase.

$\textbf{Case 2b:}$ There are $9$ multiples of $11$ with a zero that have this property: $110$, $220$, $330$, $440$, $550$, $660$, $770$, $880$, $990$. Each one contributes $2$ valid permutations (the first digit can't be zero), so there are $9 \cdot 2 = 18$ permutations in this subcase.

$\textbf{Case 3:}$ All the digits are different. Since there are $\frac{990-110}{11}+1 = 81$ multiples of $11$ between $100$ and $999$, there are $81-8-9 = 64$ multiples of $11$ remaining in this case. However, $8$ of them contain a zero, namely $209$, $308$, $407$, $506$, $605$, $704$, $803$, and $902$. Each of those multiples of $11$ contributes $2 \cdot 2=4$ valid permutations, but we overcounted by a factor of $2$; every permutation of $209$, for example, is also a permutation of $902$. Therefore, there are $8 \cdot 4 / 2 = 16$. Therefore, there are $64-8=56$ remaining multiples of $11$ without a $0$ in this case. Each one contributes $3! = 6$ valid permutations, but once again, we overcounted by a factor of $2$ (note that if a number ABC is a multiple of $11$, then so is CBA). Therefore, there are $56 \cdot 6 / 2 = 168$ valid permutations in this subcase.

Adding up all the permutations from all the cases, we have $24+18+16+168 = \boxed{\textbf{(A) } 226}$.

Solution 4

We can first overcount and then subtract. We know that there are $81$ multiples of $11$.

We can then multiply by $6$ for each permutation of these multiples. (Yet some multiples do not have six distinct permutations.)

Now divide by $2$, because if a number $abc$ with digits $a$, $b$, and $c$ is a multiple of $11$, then $cba$ is also a multiple of $11$ so we have counted the same permutations twice.

Basically, each multiple of $11$ has its own $3$ permutations (say $abc$ has $abc$ $acb$ and $bac$ whereas $cba$ has $cba$ $cab$ and $bca$). We know that each multiple of $11$ has at least $3$ permutations because it cannot have $3$ repeating digits.

Hence we have $243$ permutations without subtracting for overcounting. Now note that we overcounted cases in which we have $0$'s at the start of each number. So, in theory, we could just answer $A$ and then move on.

If we want to solve it, then we continue.

We overcounted cases where the middle digit of the number is $0$ and the last digit is $0$.

Note that we assigned each multiple of $11$ three permutations.

The last digit is $0$ gives $9$ possibilities where we overcounted by $1$ permutation for each of $110, 220, ... , 990$.

The middle digit is $0$ gives $8$ possibilities where we overcount by $1$. $605, 704, 803, 902$ and $506, 407, 308, 209$

Subtracting $17$ gives $\boxed{\textbf{(A) } 226}$.

Now, we may ask if there is further overlap (i.e if two of $abc$ and $bac$ and $acb$ were multiples of $11$). Thankfully, using divisibility rules, this can never happen, as taking the divisibility rule mod $11$ and adding, we get that $2a$, $2b$, or $2c$ is congruent to $0\ (mod\ 11)$. Since $a, b, c$ are digits, this can never happen as none of them can equal $11$ and they can't equal $0$ as they are the leading digit of a three-digit number in each of the cases.

Solution 5: A Slightly Adjusted Version of Solution 2

$\textbf{WARNING:}$ If you do not feel comfortable looking at a massive amount of casework, please skip the solution.


Recalling the divisibility rule for $11$, if we have a number $ABC$ where $A$, $B$, $C$ are digits, then $11\mid -A+B-C$.

Notice that for any three-digit positive integer $ABC$, $-A+B-C<11$, thus we have 2 possibilities: $-A+B-C=0$ and $-A+B-C=-11$.

$\textbf{Case 1:}$ $-A+B-C=0\Longrightarrow A+C=B$

Subcase $a$: $A\neq B\neq C\neq0$

We have these values for $A+C=B$ \[1+2=3,1+3=4,1+4=5,...,1+8=9\] \[2+3=5,2+4=6,...,2+7=9\] \[3+4=7,3+5=8,3+6=9\] \[4+5=9\] From which we get $7+5+3+1=16$ triples $(A,B,C)$. Counting every permutation, we have $16\cdot3!=96$ possibilities.

Subcase $b$: $A=C$, $A,B,C\neq0$

We have \[1+1=2,2+2=4,3+3=6,4+4=8\] From which we get $4\cdot3=12$ possibilities.

Subcase $c$: $A=B,C=0$

We have \[1+0=1,2+0=2,...,9+0=9\] Since $0$ can't be the hundreds digit, from here we get $9\cdot2=18$ possibilities. Summing up case $1$, we have $96+12+18=126$ possibilities.

$\textbf{Case 2:}$ $-A+B-C=-11\Longrightarrow A+C-B=11$

Subcase $a$: $A\neq B\neq C\neq0$

We have these values for $A+C-B=11$ \[9+8-6=11,9+7-5=11,...9+3-1=11\] \[8+7-4=11,8+6-3=11,8+5-2=11,8+4-1\] \[...\] From which we get $(6+4+2)\cdot3!=72$ possibilities.

Subcase $b$: $A=C$, $A,B,C\neq0$

We have \[9+9=7,8+8-5,7+7-3=11,6+6-1=11\] From which we get $4\cdot3=12$ possibilities.

Subcase $c$: $B=0\Longrightarrow A+C+11$

We have \[9+2=8+3=7+4=6+5=11\] From which we get $2\cdot2\cdot4=16$ possibilities. Summing up case $2$, we have $72+12+16=100$ possibilities.

Adding the $2$ cases, we get a total of $126+100=226$ possibilities. $\boxed{\mathrm{(A)}}$

~ Nafer

Video Solution

Two different variations on solving it. https://youtu.be/z5KNZEwmrWM

https://youtu.be/MBcHwu30MX4 -Video Solution by Richard Rusczyk

https://youtu.be/Ly69GHOq9Yw

~savannahsolver

See Also

2017 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png