Difference between revisions of "2017 AMC 10B Problems/Problem 22"

(Solution 2)
(Solution)
Line 11: Line 11:
 
===Solution 2===
 
===Solution 2===
 
We note that <math>\triangle ACB ~ \triangle ADE</math> by <math>AA</math> similarity. Also, since the area of <math>\triangle ADE = \frac{7 \cdot 5}2 = \frac{35}2</math> and <math>AE = \sqrt{74}</math>, <math>\frac{[ABC]}{[ADE]} = \frac{[ABC]}{\frac{35}2} = \left(\frac{4}{\sqrt{74}}\right)^2</math>, so the area of <math>\triangle ABC = \boxed{\textbf{(D) } \frac{140}{37}}</math>.
 
We note that <math>\triangle ACB ~ \triangle ADE</math> by <math>AA</math> similarity. Also, since the area of <math>\triangle ADE = \frac{7 \cdot 5}2 = \frac{35}2</math> and <math>AE = \sqrt{74}</math>, <math>\frac{[ABC]}{[ADE]} = \frac{[ABC]}{\frac{35}2} = \left(\frac{4}{\sqrt{74}}\right)^2</math>, so the area of <math>\triangle ABC = \boxed{\textbf{(D) } \frac{140}{37}}</math>.
 +
 +
===Solution 3===
 +
As stated before, note that <math>\triangle ACB ~ \triangle ADE</math>. By similarity, we note that <math>\frac{\overline{AC}}{\overline{BC}}</math> is equivalent to <math>\frac{7}{5}</math>. We set <math>\overline{AC}</math> to <math>7x</math> and <math>\overline{BC}</math> to <math>5x</math>. By the Pythagorean Theorem, <math>(7x)^2+(5x)^2</math> = 4^2. Combining, <math>49x^2+25x^2=16</math>. We can add and divide to get <math>x^2=\frac{8}{37}</math>. We square root and rearrange to get <math>x=\frac{2\sqrt{74}}{37}</math>. We know that the legs of the triangle are <math>7x</math> and <math>5x</math>. Mulitplying <math>x</math> by 7 and 5 eventually gives us <math>\frac{14\sqrt{74}}{37}</math>x<math>\frac{10\sqrt{74}}{37}</math>. We divide this by 2, since <math>\frac{1}{2}bh</math> is the formula for a triangle. This gives us <math>\boxed{\textbf{(D) } \frac{140}{37}}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2017|ab=B|num-b=21|num-a=23}}
 
{{AMC10 box|year=2017|ab=B|num-b=21|num-a=23}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 16:16, 20 February 2017

Problem

The diameter $\overline{AB}$ of a circle of radius $2$ is extended to a point $D$ outside the circle so that $BD=3$. Point $E$ is chosen so that $ED=5$ and line $ED$ is perpendicular to line $AD$. Segment $\overline{AE}$ intersects the circle at a point $C$ between $A$ and $E$. What is the area of $\triangle ABC$?

$\textbf{(A)}\ \frac{120}{37}\qquad\textbf{(B)}\ \frac{140}{39}\qquad\textbf{(C)}\ \frac{145}{39}\qquad\textbf{(D)}\ \frac{140}{37}\qquad\textbf{(E)}\ \frac{120}{31}$

Solution

Solution 1

Notice that $ADE$ and $ABC$ are right triangles. Then $AE = \sqrt{7^2+5^2} = \sqrt{74}$. $\sin{DAE} = \frac{5}{\sqrt{74}} = \sin{BAE} = \sin{BAC} = \frac{BC}{4}$, so $BC = \frac{20}{\sqrt{74}}$. We also find that $AC = \frac{28}{\sqrt{74}}$, and thus the area of $ABC$ is $\frac{\frac{20}{\sqrt{74}}\cdot\frac{28}{\sqrt{74}}}{2} = \frac{\frac{560}{74}}{2} = \boxed{\textbf{(D) } \frac{140}{37}}$.

Solution 2

We note that $\triangle ACB ~ \triangle ADE$ by $AA$ similarity. Also, since the area of $\triangle ADE = \frac{7 \cdot 5}2 = \frac{35}2$ and $AE = \sqrt{74}$, $\frac{[ABC]}{[ADE]} = \frac{[ABC]}{\frac{35}2} = \left(\frac{4}{\sqrt{74}}\right)^2$, so the area of $\triangle ABC = \boxed{\textbf{(D) } \frac{140}{37}}$.

Solution 3

As stated before, note that $\triangle ACB ~ \triangle ADE$. By similarity, we note that $\frac{\overline{AC}}{\overline{BC}}$ is equivalent to $\frac{7}{5}$. We set $\overline{AC}$ to $7x$ and $\overline{BC}$ to $5x$. By the Pythagorean Theorem, $(7x)^2+(5x)^2$ = 4^2. Combining, $49x^2+25x^2=16$. We can add and divide to get $x^2=\frac{8}{37}$. We square root and rearrange to get $x=\frac{2\sqrt{74}}{37}$. We know that the legs of the triangle are $7x$ and $5x$. Mulitplying $x$ by 7 and 5 eventually gives us $\frac{14\sqrt{74}}{37}$x$\frac{10\sqrt{74}}{37}$. We divide this by 2, since $\frac{1}{2}bh$ is the formula for a triangle. This gives us $\boxed{\textbf{(D) } \frac{140}{37}}$.

See Also

2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png