Difference between revisions of "2017 AMC 10B Problems/Problem 22"

m (Solution)
Line 6: Line 6:
 
==Solution==
 
==Solution==
  
Answer is D
+
Notice that <math>ADE</math> and <math>ABC</math> are right triangles. Then <math>AE = \sqrt{7^2+5^2} = \sqrt{74}</math>. <math>\sin{DAE} = \frac{5}{\sqrt{74}} = \sin{BAE} = \sin{BAC} = \frac{BC}{4}</math>, so <math>BC = \frac{20}{\sqrt{74}}</math>. We also find that <math>AC = \frac{28}{\sqrt{74}}</math>, and thus the area of <math>ABC</math> is <math>\frac{\frac{20}{\sqrt{74}}\cdot\frac{28}{\sqrt{74}}}{2} = \frac{\frac{560}{74}}{2} = \boxed{\textbf{(D) } \frac{140}{37}}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2017|ab=B|num-b=21|num-a=23}}
 
{{AMC10 box|year=2017|ab=B|num-b=21|num-a=23}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 12:57, 16 February 2017

Problem

The diameter $\overline{AB}$ of a circle of radius $2$ is extended to a point $D$ outside the circle so that $BD=3$. Point $E$ is chosen so that $ED=5$ and line $ED$ is perpendicular to line $AD$. Segment $\overline{AE}$ intersects the circle at a point $C$ between $A$ and $E$. What is the area of $\triangle ABC$?

$\textbf{(A)}\ \frac{120}{37}\qquad\textbf{(B)}\ \frac{140}{39}\qquad\textbf{(C)}\ \frac{145}{39}\qquad\textbf{(D)}\ \frac{140}{37}\qquad\textbf{(E)}\ \frac{120}{31}$

Solution

Notice that $ADE$ and $ABC$ are right triangles. Then $AE = \sqrt{7^2+5^2} = \sqrt{74}$. $\sin{DAE} = \frac{5}{\sqrt{74}} = \sin{BAE} = \sin{BAC} = \frac{BC}{4}$, so $BC = \frac{20}{\sqrt{74}}$. We also find that $AC = \frac{28}{\sqrt{74}}$, and thus the area of $ABC$ is $\frac{\frac{20}{\sqrt{74}}\cdot\frac{28}{\sqrt{74}}}{2} = \frac{\frac{560}{74}}{2} = \boxed{\textbf{(D) } \frac{140}{37}}$.

See Also

2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png