2017 AMC 10B Problems/Problem 8

Revision as of 17:17, 25 July 2021 by Mobius247 (talk | contribs) (Solution 3)

Problem

Points $A(11, 9)$ and $B(2, -3)$ are vertices of $\triangle ABC$ with $AB=AC$. The altitude from $A$ meets the opposite side at $D(-1, 3)$. What are the coordinates of point $C$?

$\textbf{(A)}\ (-8, 9)\qquad\textbf{(B)}\ (-4, 8)\qquad\textbf{(C)}\ (-4, 9)\qquad\textbf{(D)}\ (-2, 3)\qquad\textbf{(E)}\ (-1, 0)$

Solution 1

Since $AB = AC$, then $\triangle ABC$ is isosceles, so $BD = CD$. Therefore, the coordinates of $C$ are $(-1 - 3, 3 + 6) = \boxed{\textbf{(C) } (-4,9)}$.

[asy] pair A,B,C,D; A=(11,9); B=(2,-3); C=(-4,9); D=(-1,3); draw(A--B--C--cycle); draw(A--D); draw(rightanglemark(A,D,B)); label("$A$",A,E); label("$B$",B,S); label("$D$",D,W); label("$C$",C,N); [/asy]

Solution 2

Calculating the equation of the line running between points $B$ and $D$, $y = -2x + 1$. The only coordinate of $C$ that is also on this line is $\boxed{\textbf{(C) } (-4,9)}$.

Solution 3

Similar to the first solution, because the triangle is isosceles, then the line drawn in the middle separates the triangle into two smaller congruent triangles. To get from $B$ to $D$, we go to the right $3$ and up $6$. Then to get to point $C$ from point $D$, we go to the right $3$ and up $6$, getting us the coordinates $\boxed{\textbf{(C) } (-4,9)}$. ~$\text{KLBBC}$

Video Solution

https://youtu.be/4rRckA3gcPU

~savannahsolver

Video Solution by TheBeautyofMath

https://youtu.be/XRfOULUmWbY?t=367

~IceMatrix

See Also

2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png