2017 AMC 10B Problems/Problem 9

Revision as of 12:36, 16 February 2017 by Smiley123 (talk | contribs) (Problem)

Problem

A radio program has a quiz consisting of $3$ multiple-choice questions, each with $3$ choices. A contestant wins if he or she gets $2$ or more of the questions right. The contestant answers randomly to each question. What is the probability of winning?

$\textbf{(A)}\ \frac{1}{27}\qquad\textbf{(B)}\ \frac{1}{9}\qquad\textbf{(C)}\ \frac{2}{9}\qquad\textbf{(D)}\ \frac{7}{27}\qquad\textbf{(E)}\ \frac{1}{2}$

Solution

Placeholder

See Also

2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS