Difference between revisions of "2017 AMC 12A Problems/Problem 7"

(Problem)
m (Changed problem description on solution page to match problem description on problem page)
(19 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 +
==Problem==
 +
 +
Define a function on the positive integers recursively by <math>f(1) = 2</math>, <math>f(n) = f(n-1) + 1</math> if <math>n</math> is even, and <math>f(n) = f(n-2) + 2</math> if <math>n</math> is odd and greater than <math>1</math>. What is <math>f(2017)</math>?
 +
 +
<math> \textbf{(A)}\ 2017 \qquad\textbf{(B)}\ 2018 \qquad\textbf{(C)}\ 4034 \qquad\textbf{(D)}\ 4035 \qquad\textbf{(E)}\ 4036 </math>
 
==Solution==
 
==Solution==
 +
This is a recursive function, which means the function is used to evaluate itself. To solve this, we must identify the base case, <math>f(1)=2</math>. We also know that when <math>n</math> is odd, <math>f(n)=f(n-2)+2</math>. Thus we know that <math>f(2017)=f(2015)+2</math>. Thus we know that n will always be odd in the recursion of <math>f(2017)</math>, and we add <math>2</math> each recursive cycle, which there are <math>1008</math> of. Thus the answer is <math>1008*2+2=2018</math>, which is answer
 +
<math>\boxed{\textbf{(B)}}</math>.
 +
Note that when you write out a few numbers, you find that <math>f(n)=n+1</math> for any <math>n</math>, so <math>f(2017)=2018</math>
  
Let <math>j</math> represent how far Jerry walked, and <math>s</math> represent how far Sylvia walked. Since the field is a square, and Jerry walked two sides of it, while Silvia walked the diagonal, we can simply define the side of the square field to be one, and find the distances they walked. Since Jerry walked two sides,
+
==See Also==
<math>j = 2</math>
+
{{AMC12 box|year=2017|ab=A|num-b=6|num-a=8}}
Since Silvia walked the diagonal, she walked the hypotenuse of a 45, 45, 90 triangle with leg length 1. Thus,
 
<math>s = \sqrt{2} = 1.414...</math>
 
We can then take
 
<math>\frac{j-s}{j} = \frac{\sqrt{2 - 1.4}}{2} = 0.3 = 30\%</math>
 
<math>\boxed{ \textbf{A}}</math>.
 

Revision as of 10:02, 16 April 2019

Problem

Define a function on the positive integers recursively by $f(1) = 2$, $f(n) = f(n-1) + 1$ if $n$ is even, and $f(n) = f(n-2) + 2$ if $n$ is odd and greater than $1$. What is $f(2017)$?

$\textbf{(A)}\ 2017 \qquad\textbf{(B)}\ 2018 \qquad\textbf{(C)}\ 4034 \qquad\textbf{(D)}\ 4035 \qquad\textbf{(E)}\ 4036$

Solution

This is a recursive function, which means the function is used to evaluate itself. To solve this, we must identify the base case, $f(1)=2$. We also know that when $n$ is odd, $f(n)=f(n-2)+2$. Thus we know that $f(2017)=f(2015)+2$. Thus we know that n will always be odd in the recursion of $f(2017)$, and we add $2$ each recursive cycle, which there are $1008$ of. Thus the answer is $1008*2+2=2018$, which is answer $\boxed{\textbf{(B)}}$. Note that when you write out a few numbers, you find that $f(n)=n+1$ for any $n$, so $f(2017)=2018$

See Also

2017 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions