2017 AMC 12B Problems/Problem 22
Problem 22
Abby, Bernardo, Carl, and Debra play a game in which each of them starts with four coins. The game consists of four rounds. In each round, four balls are placed in an urn---one green, one red, and two white. The players each draw a ball at random without replacement. Whoever gets the green ball gives one coin to whoever gets the red ball. What is the probability that, at the end of the fourth round, each of the players has four coins?
Solution
It amountsI choices for the -1in RA, 2 choices for the rest of 1 -1 in RB, 2 choices between C and D to fill in the remaining pair of 1 and -1. Then double for symmetrical case of <RA>=3 and
Case 3. <RA>=1, and
In sum, 3+24+18=45 cases. Probability= 45÷(12^3)=5/192.
See Also
2017 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.