Difference between revisions of "2017 AMC 12B Problems/Problem 24"

(See Also)
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
==Problem 24==
+
==Problem==
  
 
Quadrilateral <math>ABCD</math> has right angles at <math>B</math> and <math>C</math>, <math>\triangle ABC \sim \triangle BCD</math>, and <math>AB > BC</math>. There is a point <math>E</math> in the interior of <math>ABCD</math> such that <math>\triangle ABC \sim \triangle CEB</math> and the area of <math>\triangle AED</math> is <math>17</math> times the area of <math>\triangle CEB</math>. What is <math>\tfrac{AB}{BC}</math>?
 
Quadrilateral <math>ABCD</math> has right angles at <math>B</math> and <math>C</math>, <math>\triangle ABC \sim \triangle BCD</math>, and <math>AB > BC</math>. There is a point <math>E</math> in the interior of <math>ABCD</math> such that <math>\triangle ABC \sim \triangle CEB</math> and the area of <math>\triangle AED</math> is <math>17</math> times the area of <math>\triangle CEB</math>. What is <math>\tfrac{AB}{BC}</math>?
Line 21: Line 21:
 
Draw line <math>FG</math> through <math>E</math>, with <math>F</math> on <math>BC</math> and <math>G</math> on <math>AD</math>, <math>FG \parallel AB</math>. WLOG let <math>CD=1</math>, <math>CB=x</math>, <math>AB=x^2</math>. By weighted average <math>FG=\frac{1+x^4}{1+x^2}</math>.  
 
Draw line <math>FG</math> through <math>E</math>, with <math>F</math> on <math>BC</math> and <math>G</math> on <math>AD</math>, <math>FG \parallel AB</math>. WLOG let <math>CD=1</math>, <math>CB=x</math>, <math>AB=x^2</math>. By weighted average <math>FG=\frac{1+x^4}{1+x^2}</math>.  
  
Meanwhile, <math>FE:EG=[\triangle CBE]:[\triangle ADE]=1:17</math>.  
+
Meanwhile, <math>FE:EG=[\triangle CBE]:[\triangle ADE]=1:17</math>. This follows from comparing the ratios of triangle DEG to CFE and triangle AEG to FEB, both pairs in which the two triangles share a height perpendicular to FG, and have base ratio <math>EG:FE</math>.
  
 
<math>FE=\frac{x^2}{1+x^2}</math>. We obtain <math>\frac{1+x^4}{1+x^2}=\frac{18x^2}{1+x^2}</math>,
 
<math>FE=\frac{x^2}{1+x^2}</math>. We obtain <math>\frac{1+x^4}{1+x^2}=\frac{18x^2}{1+x^2}</math>,
Line 27: Line 27:
  
 
The rest is the same as Solution 1.
 
The rest is the same as Solution 1.
 +
 
== Solution 3==
 
== Solution 3==
 
Let <math>A=(-1,4a), B=(-1,0), C=(1,0), D=\bigg(1,\frac{1}{a}\bigg)</math>. Then from the similar triangles condition, we compute <math>CE=\frac{4a}{\sqrt{4a^2+1}}</math> and <math>BE=\frac{2}{\sqrt{4a^2+1}}</math>. Hence, the <math>y</math>-coordinate of <math>E</math> is just <math>\frac{BE\cdot CE}{BC}=\frac{4a}{4a^2+1}</math>. Since <math>E</math> lies on the unit circle, we can compute the <math>x</math> coordinate as <math>\frac{1-4a^2}{4a^2+1}</math>. By Shoelace, we want <cmath>\frac{1}{2}\det\begin{bmatrix}
 
Let <math>A=(-1,4a), B=(-1,0), C=(1,0), D=\bigg(1,\frac{1}{a}\bigg)</math>. Then from the similar triangles condition, we compute <math>CE=\frac{4a}{\sqrt{4a^2+1}}</math> and <math>BE=\frac{2}{\sqrt{4a^2+1}}</math>. Hence, the <math>y</math>-coordinate of <math>E</math> is just <math>\frac{BE\cdot CE}{BC}=\frac{4a}{4a^2+1}</math>. Since <math>E</math> lies on the unit circle, we can compute the <math>x</math> coordinate as <math>\frac{1-4a^2}{4a^2+1}</math>. By Shoelace, we want <cmath>\frac{1}{2}\det\begin{bmatrix}
Line 34: Line 35:
 
\end{bmatrix}=17\cdot\frac{1}{2}\cdot 2 \cdot \frac{4a}{4a^2+1}</cmath>Factoring out denominators and expanding by minors, this is equivalent to
 
\end{bmatrix}=17\cdot\frac{1}{2}\cdot 2 \cdot \frac{4a}{4a^2+1}</cmath>Factoring out denominators and expanding by minors, this is equivalent to
 
<cmath>\frac{32a^4-8a^2+2}{2a(4a^2+1)}=\frac{68a}{4a^2+1} \Longrightarrow 16a^4-72a^2+1=0</cmath>This factors as <math>(4a^2-8a-1)(4a^2+8a-1)=0</math>, so <math>a=1+\frac{\sqrt{5}}{2}</math> and so the answer is <math> \textbf{(D) \ }</math>.
 
<cmath>\frac{32a^4-8a^2+2}{2a(4a^2+1)}=\frac{68a}{4a^2+1} \Longrightarrow 16a^4-72a^2+1=0</cmath>This factors as <math>(4a^2-8a-1)(4a^2+8a-1)=0</math>, so <math>a=1+\frac{\sqrt{5}}{2}</math> and so the answer is <math> \textbf{(D) \ }</math>.
 +
 +
== Notes==
 +
1) <math>\sqrt{17}</math> is the most relevant answer choice because it shares numbers with the givens of the problem.
 +
 +
2) It's a very good guess to replace finding the area of triangle AED with the area of the triangle DAF, where F is the projection of D onto AB(then find the closest answer choice).
  
 
==See Also==
 
==See Also==

Revision as of 13:56, 15 February 2021

Problem

Quadrilateral $ABCD$ has right angles at $B$ and $C$, $\triangle ABC \sim \triangle BCD$, and $AB > BC$. There is a point $E$ in the interior of $ABCD$ such that $\triangle ABC \sim \triangle CEB$ and the area of $\triangle AED$ is $17$ times the area of $\triangle CEB$. What is $\tfrac{AB}{BC}$?

$\textbf{(A) } 1+\sqrt{2} \qquad \textbf{(B) } 2 + \sqrt{2} \qquad \textbf{(C) } \sqrt{17} \qquad \textbf{(D) } 2 + \sqrt{5} \qquad \textbf{(E) } 1 + 2\sqrt{3}$

Solution 1

Let $CD=1$, $BC=x$, and $AB=x^2$. Note that $AB/BC=x$. By the Pythagorean Theorem, $BD=\sqrt{x^2+1}$. Since $\triangle BCD \sim \triangle ABC \sim \triangle CEB$, the ratios of side lengths must be equal. Since $BC=x$, $CE=\frac{x^2}{\sqrt{x^2+1}}$ and $BE=\frac{x}{\sqrt{x^2+1}}$. Let F be a point on $\overline{BC}$ such that $\overline{EF}$ is an altitude of triangle $CEB$. Note that $\triangle CEB \sim \triangle CFE \sim \triangle EFB$. Therefore, $BF=\frac{x}{x^2+1}$ and $CF=\frac{x^3}{x^2+1}$. Since $\overline{CF}$ and $\overline{BF}$ form altitudes of triangles $CED$ and $BEA$, respectively, the areas of these triangles can be calculated. Additionally, the area of triangle $BEC$ can be calculated, as it is a right triangle. Solving for each of these yields: \[[BEC]=[CED]=[BEA]=(x^3)/(2(x^2+1))\] \[[ABCD]=[AED]+[DEC]+[CEB]+[BEA]\] \[(AB+CD)(BC)/2= 17*[CEB]+ [CEB] + [CEB] + [CEB]\] \[(x^3+x)/2=(20x^3)/(2(x^2+1))\] \[(x)(x^2+1)=20x^3/(x^2+1)\] \[(x^2+1)^2=20x^2\] \[x^4-18x^2+1=0 \implies x^2=9+4\sqrt{5}=4+2(2\sqrt{5})+5\] Therefore, the answer is $\boxed{\textbf{(D) } 2+\sqrt{5}}$


Solution 2

Draw line $FG$ through $E$, with $F$ on $BC$ and $G$ on $AD$, $FG \parallel AB$. WLOG let $CD=1$, $CB=x$, $AB=x^2$. By weighted average $FG=\frac{1+x^4}{1+x^2}$.

Meanwhile, $FE:EG=[\triangle CBE]:[\triangle ADE]=1:17$. This follows from comparing the ratios of triangle DEG to CFE and triangle AEG to FEB, both pairs in which the two triangles share a height perpendicular to FG, and have base ratio $EG:FE$.

$FE=\frac{x^2}{1+x^2}$. We obtain $\frac{1+x^4}{1+x^2}=\frac{18x^2}{1+x^2}$, namely $x^4-18x^2+1=0$.

The rest is the same as Solution 1.

Solution 3

Let $A=(-1,4a), B=(-1,0), C=(1,0), D=\bigg(1,\frac{1}{a}\bigg)$. Then from the similar triangles condition, we compute $CE=\frac{4a}{\sqrt{4a^2+1}}$ and $BE=\frac{2}{\sqrt{4a^2+1}}$. Hence, the $y$-coordinate of $E$ is just $\frac{BE\cdot CE}{BC}=\frac{4a}{4a^2+1}$. Since $E$ lies on the unit circle, we can compute the $x$ coordinate as $\frac{1-4a^2}{4a^2+1}$. By Shoelace, we want \[\frac{1}{2}\det\begin{bmatrix} -1 & 4a & 1\\  \frac{1-4a^2}{4a^2+1} & \frac{4a}{4a^2+1} & 1\\  1 & \frac{1}{a} & 1 \end{bmatrix}=17\cdot\frac{1}{2}\cdot 2 \cdot \frac{4a}{4a^2+1}\]Factoring out denominators and expanding by minors, this is equivalent to \[\frac{32a^4-8a^2+2}{2a(4a^2+1)}=\frac{68a}{4a^2+1} \Longrightarrow 16a^4-72a^2+1=0\]This factors as $(4a^2-8a-1)(4a^2+8a-1)=0$, so $a=1+\frac{\sqrt{5}}{2}$ and so the answer is $\textbf{(D) \ }$.

Notes

1) $\sqrt{17}$ is the most relevant answer choice because it shares numbers with the givens of the problem.

2) It's a very good guess to replace finding the area of triangle AED with the area of the triangle DAF, where F is the projection of D onto AB(then find the closest answer choice).

See Also

2017 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png