# 2017 AMC 12B Problems/Problem 7

## Problem

The functions $\sin(x)$ and $\cos(x)$ are periodic with least period $2\pi$. What is the least period of the function $\cos(\sin(x))$? $\textbf{(A)}\ \frac{\pi}{2}\qquad\textbf{(B)}\ \pi\qquad\textbf{(C)}\ 2\pi \qquad\textbf{(D)}\ 4\pi \qquad\textbf{(E)}$ The function is not periodic.

## Solution

Start by noting that $\cos(-x)=\cos(x)$. Then realize that under this function the negative sine values yield the same as their positive value, so take the absolute value of the sine function to get the new period. This has period $\pi$, so the answer is $\boxed{(B)}$.

## See Also

 2017 AMC 12B (Problems • Answer Key • Resources) Preceded byProblem 6 Followed byProblem 8 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS