Difference between revisions of "2017 AMC 8 Problems/Problem 13"

(Created page with "==Problem 13== Peter, Emma, and Kyler played chess with each other. Peter won 4 games and lost 2 games. Emma won 3 games and lost 3 games. If Kyler lost 3 games, how many gam...")
 
(Problem 13)
Line 4: Line 4:
  
 
<math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }4</math>
 
<math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }4</math>
 +
 +
==Solution==
 +
 +
Given <math>n</math> games, there must be a total of <math>n</math> wins and <math>n</math> losses. Hence, <math>4 + 3 + K = 2 + 3 + 3</math> where <math>K</math> is Kyler's wins. <math>K = 1.</math>

Revision as of 16:08, 22 November 2017

Problem 13

Peter, Emma, and Kyler played chess with each other. Peter won 4 games and lost 2 games. Emma won 3 games and lost 3 games. If Kyler lost 3 games, how many games did he win?

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }4$

Solution

Given $n$ games, there must be a total of $n$ wins and $n$ losses. Hence, $4 + 3 + K = 2 + 3 + 3$ where $K$ is Kyler's wins. $K = 1.$

Invalid username
Login to AoPS