Difference between revisions of "2017 AMC 8 Problems/Problem 25"

m
m (Video Solutions)
 
(17 intermediate revisions by 10 users not shown)
Line 1: Line 1:
==Problem 25==
+
==Problem==
  
 
In the figure shown, <math>\overline{US}</math> and <math>\overline{UT}</math> are line segments each of length 2, and <math>m\angle TUS = 60^\circ</math>. Arcs <math>\overarc{TR}</math> and <math>\overarc{SR}</math> are each one-sixth of a circle with radius 2. What is the area of the region shown?  
 
In the figure shown, <math>\overline{US}</math> and <math>\overline{UT}</math> are line segments each of length 2, and <math>m\angle TUS = 60^\circ</math>. Arcs <math>\overarc{TR}</math> and <math>\overarc{SR}</math> are each one-sixth of a circle with radius 2. What is the area of the region shown?  
Line 8: Line 8:
  
 
==Solution==
 
==Solution==
Extend the figure into an equilateral triangle with side length 4. Using the area formula, this has area (16sqrt3)/4 which is 4sqrt3. We are given TUS as a 60 degree angle so the two things we need to subtract off are 1/6 circles. Their radius is 2, so there area is 1/6*(4pi) which is 2pi/3. Subtract to get 4sqrt3-2pi/3, which is <math>D</math>.
+
 
 +
Let the centers of the circles containing arcs <math>\overarc{SR}</math> and <math>\overarc{TR}</math> be <math>X</math> and <math>Y</math>, respectively. Extend <math>\overline{US}</math> and <math>\overline{UT}</math> to <math>X</math> and <math>Y</math>, and connect point <math>X</math> with point <math>Y</math>.
 +
<asy>
 +
unitsize(1 cm);
 +
pair U,S,T,R,X,Y;
 +
U =(2,3.464);
 +
S=(1,1.732);
 +
T=(3,1.732);
 +
R=(2,0);
 +
X=(0,0);
 +
Y=(4,0);
 +
draw(U--S);
 +
draw(S--U--T);
 +
draw(S--X--Y--T,red);
 +
draw(arc(X,R,S),red);
 +
draw(arc(Y,T,R),red);
 +
label("$U$",U, N);
 +
label("$S$", S, W);
 +
label("$T$", T, E);
 +
label("$R$", R, S);
 +
label("$X$",X, W);
 +
label("$Y$", Y, E);
 +
</asy>
 +
We can clearly see that <math>\triangle UXY</math> is an equilateral triangle, because the problem states that <math>m\angle TUS = 60^\circ</math>. We can figure out that <math>m\angle SXR= 60^\circ</math> and <math>m\angle TYR = 60^\circ</math> because they are <math>\frac{1}{6}</math> of a circle. The area of the figure is equal to <math>[\triangle UXY]</math> minus the combined area of the <math>2</math> sectors of the circles(in red). Using the area formula for an equilateral triangle, <math>\frac{a^2\sqrt{3}}{4},</math> where <math>a</math> is the side length of the equilateral triangle, <math>[\triangle UXY]</math> is <math>\frac{\sqrt 3}{4} \cdot 4^2 = 4\sqrt 3.</math> The combined area of the <math>2</math> sectors is <math>2\cdot\frac16\cdot\pi r^2</math>, which is <math>\frac 13\pi \cdot 2^2 = \frac{4\pi}{3}.</math> Thus, our final answer is <math>\boxed{\textbf{(B)}\ 4\sqrt{3}-\frac{4\pi}{3}}.</math>
 +
 
 +
==Video Solutions==
 +
https://youtu.be/LT4gyH--328
 +
 
 +
https://youtu.be/wc5rGulTTR8 - Happytwin
 +
 
 +
https://youtu.be/uvwLT5xBNdU ~DSA_Catachu
 +
 
 +
https://youtu.be/aE0oAq4Q_Ks
 +
 
 +
https://euclideanmathcircle.wixsite.com/emc1/videos?wix-vod-video-id=3a7970c3cd01453aa4263a8be7998588&wix-vod-comp-id=comp-kn8844mv
 +
 
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2017|num-b=24|after=Last Problem}}
 
{{AMC8 box|year=2017|num-b=24|after=Last Problem}}
  
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 20:48, 14 June 2021

Problem

In the figure shown, $\overline{US}$ and $\overline{UT}$ are line segments each of length 2, and $m\angle TUS = 60^\circ$. Arcs $\overarc{TR}$ and $\overarc{SR}$ are each one-sixth of a circle with radius 2. What is the area of the region shown?

[asy]draw((1,1.732)--(2,3.464)--(3,1.732)); draw(arc((0,0),(2,0),(1,1.732))); draw(arc((4,0),(3,1.732),(2,0))); label("$U$", (2,3.464), N); label("$S$", (1,1.732), W); label("$T$", (3,1.732), E); label("$R$", (2,0), S);[/asy]

$\textbf{(A) }3\sqrt{3}-\pi\qquad\textbf{(B) }4\sqrt{3}-\frac{4\pi}{3}\qquad\textbf{(C) }2\sqrt{3}\qquad\textbf{(D) }4\sqrt{3}-\frac{2\pi}{3}\qquad\textbf{(E) }4+\frac{4\pi}{3}$

Solution

Let the centers of the circles containing arcs $\overarc{SR}$ and $\overarc{TR}$ be $X$ and $Y$, respectively. Extend $\overline{US}$ and $\overline{UT}$ to $X$ and $Y$, and connect point $X$ with point $Y$. [asy] unitsize(1 cm); pair U,S,T,R,X,Y; U =(2,3.464); S=(1,1.732); T=(3,1.732); R=(2,0); X=(0,0); Y=(4,0); draw(U--S); draw(S--U--T); draw(S--X--Y--T,red); draw(arc(X,R,S),red); draw(arc(Y,T,R),red); label("$U$",U, N); label("$S$", S, W); label("$T$", T, E); label("$R$", R, S); label("$X$",X, W); label("$Y$", Y, E); [/asy] We can clearly see that $\triangle UXY$ is an equilateral triangle, because the problem states that $m\angle TUS = 60^\circ$. We can figure out that $m\angle SXR= 60^\circ$ and $m\angle TYR = 60^\circ$ because they are $\frac{1}{6}$ of a circle. The area of the figure is equal to $[\triangle UXY]$ minus the combined area of the $2$ sectors of the circles(in red). Using the area formula for an equilateral triangle, $\frac{a^2\sqrt{3}}{4},$ where $a$ is the side length of the equilateral triangle, $[\triangle UXY]$ is $\frac{\sqrt 3}{4} \cdot 4^2 = 4\sqrt 3.$ The combined area of the $2$ sectors is $2\cdot\frac16\cdot\pi r^2$, which is $\frac 13\pi \cdot 2^2 = \frac{4\pi}{3}.$ Thus, our final answer is $\boxed{\textbf{(B)}\ 4\sqrt{3}-\frac{4\pi}{3}}.$

Video Solutions

https://youtu.be/LT4gyH--328

https://youtu.be/wc5rGulTTR8 - Happytwin

https://youtu.be/uvwLT5xBNdU ~DSA_Catachu

https://youtu.be/aE0oAq4Q_Ks

https://euclideanmathcircle.wixsite.com/emc1/videos?wix-vod-video-id=3a7970c3cd01453aa4263a8be7998588&wix-vod-comp-id=comp-kn8844mv

See Also

2017 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS