Difference between revisions of "2017 AMC 8 Problems/Problem 5"

(Created page with "==Problem 5== What is the value of the expression <math>\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8}{1+2+3+4+5+6+7+8}</math>? <math>\textbf{(A) }1020\qqua...")
 
m (Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
We evaluate both the top and bottom: <math>\frac{40320}{36}</math>. This simplifies to <math>1120</math>, or <math>B</math>.
+
We evaluate both the top and bottom: <math>\frac{40320}{36}</math>. This simplifies to <math>\boxed{\textbf{(B)}\ 1120}.</math>
  
 
==See Also==
 
==See Also==

Revision as of 14:22, 22 November 2017

Problem 5

What is the value of the expression $\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8}{1+2+3+4+5+6+7+8}$?

$\textbf{(A) }1020\qquad\textbf{(B) }1120\qquad\textbf{(C) }1220\qquad\textbf{(D) }2240\qquad\textbf{(E) }3360$

Solution

We evaluate both the top and bottom: $\frac{40320}{36}$. This simplifies to $\boxed{\textbf{(B)}\ 1120}.$

See Also

2017 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS