# Difference between revisions of "2018 AIME II Problems/Problem 14"

## Problem

The incircle $\omega$ of triangle $ABC$ is tangent to $\overline{BC}$ at $X$. Let $Y \neq X$ be the other intersection of $\overline{AX}$ with $\omega$. Points $P$ and $Q$ lie on $\overline{AB}$ and $\overline{AC}$, respectively, so that $\overline{PQ}$ is tangent to $\omega$ at $Y$. Assume that $AP = 3$, $PB = 4$, $AC = 8$, and $AQ = \dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

## Solution 1

Let sides $\overline{AB}$ and $\overline{AC}$ be tangent to $\omega$ at $Z$ and $W$, respectively. Let $\alpha = \angle BAX$ and $\beta = \angle AXC$. Because $\overline{PQ}$ and $\overline{BC}$ are both tangent to $\omega$ and $\angle YXC$ and $\angle QYX$ subtend the same arc of $\omega$, it follows that $\angle AYP = \angle QYX = \angle YXC = \beta$. By equal tangents, $PZ = PY$. Applying the Law of Sines to $\triangle APY$ yields $$\frac{AZ}{AP} = 1 + \frac{ZP}{AP} = 1 + \frac{PY}{AP} = 1 + \frac{\sin\alpha}{\sin\beta}.$$Similarly, applying the Law of Sines to $\triangle ABX$ gives $$\frac{AZ}{AB} = 1 - \frac{BZ}{AB} = 1 - \frac{BX}{AB} = 1 - \frac{\sin\alpha}{\sin\beta}.$$It follows that $$2 = \frac{AZ}{AP} + \frac{AZ}{AB} = \frac{AZ}3 + \frac{AZ}7,$$implying $AZ = \tfrac{21}5$. Applying the same argument to $\triangle AQY$ yields $$2 = \frac{AW}{AQ} + \frac{AW}{AC} = \frac{AZ}{AQ} + \frac{AZ}{AC} = \frac{21}5\left(\frac{1}{AQ} + \frac 18\right),$$from which $AQ = \tfrac{168}{59}$. The requested sum is $168 + 59 = \boxed{227}$.

## Solution 2 (Projective)

Let sides $\overline{AB}$ and $\overline{AC}$ be tangent to $\omega$ at $Z$ and $W$, respectively. Let $\alpha = \angle BAX$ and $\beta = \angle AXC$. Because $\overline{PQ}$ and $\overline{BC}$ are both tangent to $\omega$ and $\angle YXC$ and $\angle QYX$ subtend the same arc of $\omega$, it follows that $\angle AYP = \angle QYX = \angle YXC = \beta$. By equal tangents, $PZ = PY$. Applying the Law of Sines to $\triangle APY$ yields $$\frac{AZ}{AP} = 1 + \frac{ZP}{AP} = 1 + \frac{PY}{AP} = 1 + \frac{\sin\alpha}{\sin\beta}.$$Similarly, applying the Law of Sines to $\triangle ABX$ gives $$\frac{AZ}{AB} = 1 - \frac{BZ}{AB} = 1 - \frac{BX}{AB} = 1 - \frac{\sin\alpha}{\sin\beta}.$$It follows that $$2 = \frac{AZ}{AP} + \frac{AZ}{AB} = \frac{AZ}3 + \frac{AZ}7,$$implying $AZ = \tfrac{21}5$. Applying the same argument to $\triangle AQY$ yields $$2 = \frac{AW}{AQ} + \frac{AW}{AC} = \frac{AZ}{AQ} + \frac{AZ}{AC} = \frac{21}5\left(\frac{1}{AQ} + \frac 18\right),$$from which $AQ = \tfrac{168}{59}$. The requested sum is $168 + 59 = \boxed{227}$. -Vfire

 2018 AIME II (Problems • Answer Key • Resources) Preceded byProblem 13 Followed byProblem 15 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 