Difference between revisions of "2018 AIME II Problems/Problem 7"

(Solution 1)
(Solution)
Line 3: Line 3:
 
Triangle <math>ABC</math> has side lengths <math>AB = 9</math>, <math>BC =</math> <math>5\sqrt{3}</math>, and <math>AC = 12</math>. Points <math>A = P_{0}, P_{1}, P_{2}, ... , P_{2450} = B</math> are on segment <math>\overline{AB}</math> with <math>P_{k}</math> between <math>P_{k-1}</math> and <math>P_{k+1}</math> for <math>k = 1, 2, ..., 2449</math>, and points <math>A = Q_{0}, Q_{1}, Q_{2}, ... , Q_{2450} = C</math> are on segment <math>\overline{AC}</math> with <math>Q_{k}</math> between <math>Q_{k-1}</math> and <math>Q_{k+1}</math> for <math>k = 1, 2, ..., 2449</math>. Furthermore, each segment <math>\overline{P_{k}Q_{k}}</math>, <math>k = 1, 2, ..., 2449</math>, is parallel to <math>\overline{BC}</math>. The segments cut the triangle into <math>2450</math> regions, consisting of <math>2449</math> trapezoids and <math>1</math> triangle. Each of the <math>2450</math> regions has the same area. Find the number of segments <math>\overline{P_{k}Q_{k}}</math>, <math>k = 1, 2, ..., 2450</math>, that have rational length.
 
Triangle <math>ABC</math> has side lengths <math>AB = 9</math>, <math>BC =</math> <math>5\sqrt{3}</math>, and <math>AC = 12</math>. Points <math>A = P_{0}, P_{1}, P_{2}, ... , P_{2450} = B</math> are on segment <math>\overline{AB}</math> with <math>P_{k}</math> between <math>P_{k-1}</math> and <math>P_{k+1}</math> for <math>k = 1, 2, ..., 2449</math>, and points <math>A = Q_{0}, Q_{1}, Q_{2}, ... , Q_{2450} = C</math> are on segment <math>\overline{AC}</math> with <math>Q_{k}</math> between <math>Q_{k-1}</math> and <math>Q_{k+1}</math> for <math>k = 1, 2, ..., 2449</math>. Furthermore, each segment <math>\overline{P_{k}Q_{k}}</math>, <math>k = 1, 2, ..., 2449</math>, is parallel to <math>\overline{BC}</math>. The segments cut the triangle into <math>2450</math> regions, consisting of <math>2449</math> trapezoids and <math>1</math> triangle. Each of the <math>2450</math> regions has the same area. Find the number of segments <math>\overline{P_{k}Q_{k}}</math>, <math>k = 1, 2, ..., 2450</math>, that have rational length.
  
== Solution ==
+
== Solution 1 ==
=== Solution 1 ===
 
 
For each <math>k</math> between <math>2</math> and <math>2450</math>, the area of the trapezoid with <math>\overline{P_kQ_k}</math> as its bottom base is the difference between the areas of two triangles, both similar to <math>\triangle{ABC}</math>. Let <math>d_k</math> be the length of segment <math>\overline{P_kQ_k}</math>. The area of the trapezoid with bases <math>\overline{P_{k-1}Q_{k-1}}</math> and <math>P_kQ_k</math> is <math>(\frac{d_k}{5\sqrt{3}})^2 - (\frac{d_{k-1}}{5\sqrt{3}})^2 = \frac{d_k^2-d_{k-1}^2}{75}</math> times the area of <math>\triangle{ABC}</math>. (This logic also applies to the topmost triangle if we notice that <math>d_0 = 0</math>.) However, we also know that the area of each shape is <math>\frac{1}{2450}</math> times the area of <math>\triangle{ABC}</math>. We then have <math>\frac{d_k^2-d_{k-1}^2}{75} = \frac{1}{2450}</math>. Simplifying, <math>d_k^2-d_{k-1}^2 = \frac{3}{98}</math>. However, we know that <math>d_0^2 = 0</math>, so <math>d_1^2 = \frac{3}{98}</math>, and in general, <math>d_k^2 = \frac{3k}{98}</math> and <math>d_k = \frac{\sqrt{\frac{3k}{2}}}{7}</math>. The smallest <math>k</math> that gives a rational <math>d_k</math> is <math>6</math>, so <math>d_k</math> is rational if and only if <math>k = 6n^2</math> for some integer <math>n</math>.The largest <math>n</math> such that <math>6n^2</math> is less than <math>2450</math> is <math>20</math>, so <math>k</math> has <math>\boxed{020}</math> possible values.
 
For each <math>k</math> between <math>2</math> and <math>2450</math>, the area of the trapezoid with <math>\overline{P_kQ_k}</math> as its bottom base is the difference between the areas of two triangles, both similar to <math>\triangle{ABC}</math>. Let <math>d_k</math> be the length of segment <math>\overline{P_kQ_k}</math>. The area of the trapezoid with bases <math>\overline{P_{k-1}Q_{k-1}}</math> and <math>P_kQ_k</math> is <math>(\frac{d_k}{5\sqrt{3}})^2 - (\frac{d_{k-1}}{5\sqrt{3}})^2 = \frac{d_k^2-d_{k-1}^2}{75}</math> times the area of <math>\triangle{ABC}</math>. (This logic also applies to the topmost triangle if we notice that <math>d_0 = 0</math>.) However, we also know that the area of each shape is <math>\frac{1}{2450}</math> times the area of <math>\triangle{ABC}</math>. We then have <math>\frac{d_k^2-d_{k-1}^2}{75} = \frac{1}{2450}</math>. Simplifying, <math>d_k^2-d_{k-1}^2 = \frac{3}{98}</math>. However, we know that <math>d_0^2 = 0</math>, so <math>d_1^2 = \frac{3}{98}</math>, and in general, <math>d_k^2 = \frac{3k}{98}</math> and <math>d_k = \frac{\sqrt{\frac{3k}{2}}}{7}</math>. The smallest <math>k</math> that gives a rational <math>d_k</math> is <math>6</math>, so <math>d_k</math> is rational if and only if <math>k = 6n^2</math> for some integer <math>n</math>.The largest <math>n</math> such that <math>6n^2</math> is less than <math>2450</math> is <math>20</math>, so <math>k</math> has <math>\boxed{020}</math> possible values.
  
 
Solution by zeroman
 
Solution by zeroman
 +
 +
==Solution 2==
 +
We have that there are <math>2449</math> trapezoids and <math>1</math> triangle of equal area, with that one triangle being <math>AP_1Q_1</math>. Notice, if we "stack" the trapezoids on top of <math>\bigtriangleup AP_1Q_1</math> the way they already are, we'd create a similar triangle, all of which are similar to <math>\bigtriangleup ABC</math>, and since the trapezoids and <math>\bigtriangleup AP_1Q_1</math> have equal area, each of these similar triangles, <math>AP_kQ_k</math> have area <math>\frac{k}{2450}\left[ ABC\right]</math>, and so <math>\frac{\left[ AP_kQ_k\right]}{\left[ABC\right]}=\frac{k}{2450}</math>. We want the ratio of the side lengths <math>P_kQ_k:BC</math>. Since area is a 2-dimensional unit of measurement, and side lengths are 1-dimensional, the ratio is simply the square root of the areas, or <math>\frac{P_kQ_k}{BC}=\sqrt{\frac{k}{2450}} \implies P_kQ_k=BC\cdot \sqrt{\frac{k}{2450}}=5\sqrt{3}\cdot\sqrt{\frac{k}{2450}}=\frac{1}{7}\cdot \sqrt{\frac{3k}{2}}=\frac{3}{7}\sqrt{\frac{k}{6}} \implies k=6n^2<2450 \implies 0<n\leq 20</math>, so there are <math>\boxed{020}</math> solutions.
 +
 +
Solution by ktong
 
{{AIME box|year=2018|n=II|num-b=6|num-a=8}}
 
{{AIME box|year=2018|n=II|num-b=6|num-a=8}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 16:17, 24 March 2018

Problem

Triangle $ABC$ has side lengths $AB = 9$, $BC =$ $5\sqrt{3}$, and $AC = 12$. Points $A = P_{0}, P_{1}, P_{2}, ... , P_{2450} = B$ are on segment $\overline{AB}$ with $P_{k}$ between $P_{k-1}$ and $P_{k+1}$ for $k = 1, 2, ..., 2449$, and points $A = Q_{0}, Q_{1}, Q_{2}, ... , Q_{2450} = C$ are on segment $\overline{AC}$ with $Q_{k}$ between $Q_{k-1}$ and $Q_{k+1}$ for $k = 1, 2, ..., 2449$. Furthermore, each segment $\overline{P_{k}Q_{k}}$, $k = 1, 2, ..., 2449$, is parallel to $\overline{BC}$. The segments cut the triangle into $2450$ regions, consisting of $2449$ trapezoids and $1$ triangle. Each of the $2450$ regions has the same area. Find the number of segments $\overline{P_{k}Q_{k}}$, $k = 1, 2, ..., 2450$, that have rational length.

Solution 1

For each $k$ between $2$ and $2450$, the area of the trapezoid with $\overline{P_kQ_k}$ as its bottom base is the difference between the areas of two triangles, both similar to $\triangle{ABC}$. Let $d_k$ be the length of segment $\overline{P_kQ_k}$. The area of the trapezoid with bases $\overline{P_{k-1}Q_{k-1}}$ and $P_kQ_k$ is $(\frac{d_k}{5\sqrt{3}})^2 - (\frac{d_{k-1}}{5\sqrt{3}})^2 = \frac{d_k^2-d_{k-1}^2}{75}$ times the area of $\triangle{ABC}$. (This logic also applies to the topmost triangle if we notice that $d_0 = 0$.) However, we also know that the area of each shape is $\frac{1}{2450}$ times the area of $\triangle{ABC}$. We then have $\frac{d_k^2-d_{k-1}^2}{75} = \frac{1}{2450}$. Simplifying, $d_k^2-d_{k-1}^2 = \frac{3}{98}$. However, we know that $d_0^2 = 0$, so $d_1^2 = \frac{3}{98}$, and in general, $d_k^2 = \frac{3k}{98}$ and $d_k = \frac{\sqrt{\frac{3k}{2}}}{7}$. The smallest $k$ that gives a rational $d_k$ is $6$, so $d_k$ is rational if and only if $k = 6n^2$ for some integer $n$.The largest $n$ such that $6n^2$ is less than $2450$ is $20$, so $k$ has $\boxed{020}$ possible values.

Solution by zeroman

Solution 2

We have that there are $2449$ trapezoids and $1$ triangle of equal area, with that one triangle being $AP_1Q_1$. Notice, if we "stack" the trapezoids on top of $\bigtriangleup AP_1Q_1$ the way they already are, we'd create a similar triangle, all of which are similar to $\bigtriangleup ABC$, and since the trapezoids and $\bigtriangleup AP_1Q_1$ have equal area, each of these similar triangles, $AP_kQ_k$ have area $\frac{k}{2450}\left[ ABC\right]$, and so $\frac{\left[ AP_kQ_k\right]}{\left[ABC\right]}=\frac{k}{2450}$. We want the ratio of the side lengths $P_kQ_k:BC$. Since area is a 2-dimensional unit of measurement, and side lengths are 1-dimensional, the ratio is simply the square root of the areas, or $\frac{P_kQ_k}{BC}=\sqrt{\frac{k}{2450}} \implies P_kQ_k=BC\cdot \sqrt{\frac{k}{2450}}=5\sqrt{3}\cdot\sqrt{\frac{k}{2450}}=\frac{1}{7}\cdot \sqrt{\frac{3k}{2}}=\frac{3}{7}\sqrt{\frac{k}{6}} \implies k=6n^2<2450 \implies 0<n\leq 20$, so there are $\boxed{020}$ solutions.

Solution by ktong

2018 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png