Difference between revisions of "2018 AIME I Problems/Problem 2"

m (Protected "2018 AIME I Problems/Problem 2" ([Edit=Allow only administrators] (expires 23:16, 7 March 2018 (UTC)) [Move=Allow only administrators] (expires 23:16, 7 March 2018 (UTC))))
m (Solution 2)
(11 intermediate revisions by 10 users not shown)
Line 1: Line 1:
 +
==Problem==
  
 +
The number <math>n</math> can be written in base <math>14</math> as <math>\underline{a}\text{ }\underline{b}\text{ }\underline{c}</math>, can be written in base <math>15</math> as <math>\underline{a}\text{ }\underline{c}\text{ }\underline{b}</math>, and can be written in base <math>6</math> as <math>\underline{a}\text{ }\underline{c}\text{ }\underline{a}\text{ }\underline{c}\text{ }</math>, where <math>a > 0</math>. Find the base-<math>10</math> representation of <math>n</math>.
 +
==Solution==
 +
 +
We have these equations:
 +
<math>196a+14b+c=225a+15c+b=222a+37c</math>.
 +
Taking the last two we get <math>3a+b=22c</math>. Because <math>c \neq 0</math> otherwise <math>a \ngtr 0</math>, and <math>a \leq 5</math>, <math>c=1</math>.
 +
 +
Then we know <math>3a+b=22</math>.
 +
Taking the first two equations we see that <math>29a+14=13b</math>. Combining the two gives <math>a=4, b=10</math>. Then we see that <math>222 \times 4+37 \times1=\boxed{925}</math>.
 +
 +
==Solution 2==
 +
 +
We know that <math>196a+14b+c=225a+15c+b=222a+37c</math>. Combining the first and third equations give that <math>196a+14b+c=222a+37c</math>, or <cmath>7b=13a+18c</cmath>
 +
The second and third gives <math>222a+37c=225a+15c+b</math>, or <cmath>22c-3a=b </cmath><cmath> 154c-21a=7b=13a+18c </cmath><cmath> 4c=a</cmath>
 +
We can have <math>a=4,8,12</math>, but only <math>a=4</math> falls within the possible digits of base <math>6</math>. Thus <math>a=4</math>, <math>c=1</math>, and thus you can find <math>b</math> which equals <math>10</math>. Thus, our answer is <math>4\cdot225+1\cdot15+10=\boxed{925}</math>.
 +
 +
==Video Solution==
 +
 +
https://www.youtube.com/watch?v=WVtbD8x9fCM
 +
~Shreyas S
 +
 +
==See Also==
 +
{{AIME box|year=2018|n=I|num-b=1|num-a=3}}
 +
{{MAA Notice}}

Revision as of 20:41, 27 November 2020

Problem

The number $n$ can be written in base $14$ as $\underline{a}\text{ }\underline{b}\text{ }\underline{c}$, can be written in base $15$ as $\underline{a}\text{ }\underline{c}\text{ }\underline{b}$, and can be written in base $6$ as $\underline{a}\text{ }\underline{c}\text{ }\underline{a}\text{ }\underline{c}\text{ }$, where $a > 0$. Find the base-$10$ representation of $n$.

Solution

We have these equations: $196a+14b+c=225a+15c+b=222a+37c$. Taking the last two we get $3a+b=22c$. Because $c \neq 0$ otherwise $a \ngtr 0$, and $a \leq 5$, $c=1$.

Then we know $3a+b=22$. Taking the first two equations we see that $29a+14=13b$. Combining the two gives $a=4, b=10$. Then we see that $222 \times 4+37 \times1=\boxed{925}$.

Solution 2

We know that $196a+14b+c=225a+15c+b=222a+37c$. Combining the first and third equations give that $196a+14b+c=222a+37c$, or \[7b=13a+18c\] The second and third gives $222a+37c=225a+15c+b$, or \[22c-3a=b\]\[154c-21a=7b=13a+18c\]\[4c=a\] We can have $a=4,8,12$, but only $a=4$ falls within the possible digits of base $6$. Thus $a=4$, $c=1$, and thus you can find $b$ which equals $10$. Thus, our answer is $4\cdot225+1\cdot15+10=\boxed{925}$.

Video Solution

https://www.youtube.com/watch?v=WVtbD8x9fCM ~Shreyas S

See Also

2018 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png