2018 AIME I Problems/Problem 4

Revision as of 01:35, 13 May 2018 by Rootthreeovertwo (talk | contribs) (Solution 5 (Faster Law of Cosines))

Problem 4

In $\triangle ABC, AB = AC = 10$ and $BC = 12$. Point $D$ lies strictly between $A$ and $B$ on $\overline{AB}$ and point $E$ lies strictly between $A$ and $C$ on $\overline{AC}$ so that $AD = DE = EC$. Then $AD$ can be expressed in the form $\dfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

Solution 1 (No Trig)

[asy] import cse5; unitsize(10mm); pathpen=black; dotfactor=3;  pair B = (0,0), A = (6,8), C = (12,0), D = (2.154,2.872), E = (8.153, 5.128), F=(7.68,5.76), G=(7.077,6.564), H=(5.6,4.3), I=(4.5,6), J=(10,2.66); pair[] dotted = {A,B,C,D,E,F,G};  D(A--B); D(C--B); D(A--C); D(D--E); pathpen=dashed; D(B--F); D(D--G);  dot(dotted); label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,NW); label("$E$",E,NE); label("$F$",F,NE); label("$G$",G,NE); label("$x$",H,NW); label("$x$",I,NW); label("$x$",J,NE); [/asy]

We draw the altitude from $B$ to $\overline{AC}$ to get point $F$. We notice that the triangle's height from $A$ to $\overline{BC}$ is 8 because it is a $3-4-5$ Right Triangle. To find the length of $\overline{BF}$, we let $h$ represent $\overline{BF}$ and set up an equation by finding two ways to express the area. The equation is $(8)(12)=(10)(h)$, which leaves us with $h=9.6$. We then solve for the length $\overline{AF}$, which is done through pythagorean theorm and get $\overline{AF}$ = $2.8$. We can now see that $\triangle ABF$ is a $7-24-25$ Right Triangle. Thus, we set $\overline{AG}$ as $5-$$\tfrac{x}{2}$, and yield that $\overline{AD}$ $=$ $($ $5-$ $\tfrac{x}{2}$ $)$ $($ $\tfrac{25}{7}$ $)$. Now, we can see $x$ = $($ $5-$ $\tfrac{x}{2}$ $)$ $($ $\tfrac{25}{7}$ $)$. Solving this equation, we yield $39x=250$, or $x=$ $\tfrac{250}{39}$. Thus, our final answer is $250+39=\boxed{289}$. ~bluebacon008

Solution 2 (Coordinates)

Let $B = (0, 0)$, $C = (12, 0)$, and $A = (6, 8)$. Then, let $x$ be in the interval $0<x<2$ and parametrically define $D$ and $E$ as $(6-3x, 8-4x)$ and $(12-3x, 4x)$ respectively. Note that $AD = 5x$, so $DE = 5x$. This means that \begin{align*} \sqrt{36+(8x-8)^2} &= 5x\\ 36+(8x-8)^2 &= 25x^2\\ 64x^2-128x+100 &= 25x^2\\ 39x^2-128x+100 &= 0\\ x &= \dfrac{128\pm\sqrt{16384-15600}}{78}\\ x &= \dfrac{100}{78}, 2\\ \end{align*} However, since $2$ is extraneous by definition, $x=\dfrac{50}{39}\implies AD = \dfrac{250}{39}\implies\boxed{289}$ ~ mathwiz0803

Solution 3 (Law of Cosines)

As shown in the diagram, let $x$ denote $\overline{AD}$. Let us denote the foot of the altitude of $A$ to $\overline{BC}$ as $F$. Note that $\overline{AE}$ can be expressed as $10-x$ and $\triangle{ABF}$ is a $6-8-10$ triangle . Therefore, $\sin(\angle{BAF})=\frac{3}{5}$ and $\cos(\angle{BAF})=\frac{4}{5}$. Before we can proceed with the Law of Cosines, we must determine $\cos(\angle{BAC})=\cos(2\cdot \angle{BAF})=\cos^2(\angle{BAF})-\sin^2(\angle{BAF})=\frac{7}{25}$. Using LOC, we can write the following statement: \[(\overline{DE})^2=(\overline{AD})^2+\overline{AE}^2-2(\overline{AD})(\overline{AE})\cos(\angle{BAC})\implies\] \[x^2=x^2+(10-x)^2-2(x)(10-x)\left(\frac{7}{25}\right)\implies\] \[0=(10-x)^2-\frac{14x}{25}(10-x)\implies\] \[0=10-x-\frac{14x}{25}\implies\] \[10=\frac{39x}{25}\implies x=\frac{250}{39}\] Thus, the desired answer is $\boxed{289}$ ~ blitzkrieg21

Solution 4

In isosceles triangle, draw the altitude from $D$ onto $\overline{AD}$. Let the point of intersection be $X$. Clearly, $AE=10-AD$, and hence $AX=\frac{10-AD}{2}$.

Now, we recognise that the perpendicular from $A$ onto $\overline{AD}$ gives us two $6$-$8$-$10$ triangles. So, we calculate $\sin \angle ABC=\frac{4}{5}$ and $\cos \angle ABC=\frac{3}{5}$

$\angle BAC = 180-2\cdot\angle ABC$. And hence,

$\cos \angle BAC = \cos \angle (180-2\cdot\angle ABC) = -\cos (2\cdot\angle ABC) = \sin^2 \angle ABC - \cos^2 \angle ABC = 2\cos^2 \angle ABC - 1 = \frac{32}{25}-\frac{25}{25}=\frac{7}{25}$

Inspecting $\triangle ADX$ gives us $\cos \angle BAC = \frac{\frac{10-x}{2}}{x} = \frac{10-x}{2x}$ Solving the equation $\frac{10-x}{2x}=\frac{7}{25}$ gives $x= \frac{250}{39} \implies\boxed{289}$

~novus677

Solution 5 (Fastest (Law of Cosines))

We can have 2 Law of Cosines applied on $\angle A$ (one from $\triangle ADE$ and one from $\triangle ABC$),

$x^2=x^2+(10-x)^2-2(x)(10-x)\cdot cos A$ and $12^2=10^2+10^2-2(10)(10)\cdot cos A$

Solving for $cos A$ in both equations, we get

$cos A = \frac{(10-x)^2}{(2)(10-x)(x)}$ and $cos A = \frac{7}{25} \implies \frac{(10-x^2)}{(2)(10-x)(x)} = \frac{7}{25} \implies  x = \frac{250}{39}$, so the answer is $\boxed {289}$

~RootThreeOverTwo

See Also

2018 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png