2018 AIME I Problems/Problem 8

Revision as of 13:01, 7 March 2019 by Alcboy1729 (talk | contribs) (Solution 2)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Let $ABCDEF$ be an equiangular hexagon such that $AB=6, BC=8, CD=10$, and $DE=12$. Denote by $d$ the diameter of the largest circle that fits inside the hexagon. Find $d^2$.

Solution 1

2018 AIME I-8.png

- cooljoseph

First of all, draw a good diagram! This is always the key to solving any geometry problem. Once you draw it, realize that $EF=2, FA=16$. Why? Because since the hexagon is equiangular, we can put an equilateral triangle around it, with side length $6+8+10=24$. Then, if you drew it to scale, notice that the "widest" this circle can be according to $AF, CD$ is $7\sqrt{3}$. And it will be obvious that the sides won't be inside the circle, so our answer is $\boxed{147}$.


Solution 2

Like solution 1, draw out the large equilateral triangle with side length $24$. Let the tangent point of the circle at $\overline{CD}$ be G and the tangent point of the circle at $\overline{AF}$ be H. Clearly, GH is the diameter of our circle, and is also perpendicular to $\overline{CD}$ and $\overline{AF}$.

The equilateral triangle of side length $10$ is similar to our large equilateral triangle of $24$. And the height of the former equilateral triangle is $\sqrt{10^2-5^2}=5\sqrt{3}$. By our similarity condition, $\frac{10}{24}=\frac{5\sqrt{3}}{d+5\sqrt{3}}$

Solving this equation gives $d=7\sqrt{3}$, and $d^2=\boxed{147}$



This is because the altitude of our equilateral triangle with side length $10$ is perpendicular to the tangent line to the circle, which implies they are all $90$ degrees (two $90$ degree angles from altitude, two $90$ degree angles from tangent lines). This allows us to calculate further. Tilt your head $120$ degrees clockwise if you can't see what is being done. ~IronicNinja

See Also

2018 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS