2018 AMC 10A Problems/Problem 10

Revision as of 20:58, 9 February 2018 by Vedadehhc (talk | contribs)

Suppose that real number $x$ satisfies \[\sqrt{49-x^2}-\sqrt{25-x^2}=3\]. What is the value of $\sqrt{49-x^2}+\sqrt{25-x^2}$?

$\textbf{(A) }8 \qquad \textbf{(B) }\sqrt{33}+8\qquad \textbf{(C) }9 \qquad \textbf{(D) }2\sqrt{10}+4 \qquad \textbf{(E) }12 \qquad$

Solutions

Solution 1

In order to get rid of the square roots, we multiply by the conjugate. Its value is the solution.The $x^2$ terms cancel nicely. $(\sqrt {49-x^2} + \sqrt {25-x^2}) * (\sqrt {49-x^2} - \sqrt {25-x^2}) = 49-x^2 - 25 +x^2 = 24$

Given that $(\sqrt {49-x^2} - \sqrt {25-x^2})$ = 3, $(\sqrt {49-x^2} + \sqrt {25-x^2}) = \frac {24} {3} = \boxed{(A) 8}$

Solution by PancakeMonster2004, explanations added by a1b2.

Solution 2 (bad)

Let $u=\sqrt{49-x^2}$, and let $v=\sqrt{25-x^2}$. Then $v=\sqrt{u^2-24}$. Substituting, we get $u-\sqrt{u^2-24}=3$. Rearranging, we get $u-3=\sqrt{u^2-24}$. Squaring both sides and solving, we get $u=\frac{11}{2}$ and $v=\frac{11}{2}-3=\frac{5}{2}$. Adding, we get that the answer is $\boxed{(A) 8}$

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png