2018 AMC 10A Problems/Problem 11

Revision as of 22:07, 31 October 2022 by Mathkiddie (talk | contribs) (Solution 5 (Stars and Bars))

Problem

When $7$ fair standard $6$-sided dice are thrown, the probability that the sum of the numbers on the top faces is $10$ can be written as \[\frac{n}{6^{7}},\] where $n$ is a positive integer. What is $n$?

$\textbf{(A) }42\qquad \textbf{(B) }49\qquad \textbf{(C) }56\qquad \textbf{(D) }63\qquad \textbf{(E) }84\qquad$

Solutions

Solution 1

Add possibilities. There are $3$ ways to sum to $10$, listed below.

\[4,1,1,1,1,1,1: 7\] \[3,2,1,1,1,1,1: 42\] \[2,2,2,1,1,1,1: 35.\]

Add up the possibilities: $35+42+7=\boxed{\textbf{(E) } 84}$.

Solution 2

Rolling a sum of $10$ with 7 dice can be represented with stars and bars, with 10 stars and 6 bars. Each star represents one of the dots on the dices' faces and the bars represent separation between different dice. However, we must note that each die must have at least one dot on a face, so there must already be 7 stars predetermined. We are left with 3 stars and 6 bars, which we can rearrange in $\dbinom{9}{3}=\boxed{\textbf{(E) } 84}$ ways.

Solution 3 (overkill)

We can use generating functions, where $(x+x^2+...+x^6)$ is the function for each die. We want to find the coefficient of $x^{10}$ in $(x+x^2+...+x^6)^7$, which is the coefficient of $x^3$ in $\left(\frac{1-x^7}{1-x}\right)^7$. This evaluates to $\dbinom{-7}{3} \cdot (-1)^3=\boxed{\textbf{(E) } 84}$

Solution 4 (Stars and Bars)

If we let each number take its minimum value of 1, we will get 7 as the minimum sum. So we can do $10$ - $7$ = $3$ to find the number of balls we need to distribute to get three more added to the minimum to get 10, so the problem is asking how many ways can you put $3$ balls into $7$ boxes. From there we get $\binom{7+3-1}{7-1}=\binom{9}{6}=\boxed{84}$

Solution 6 (Solution 5 but more clearer and compact)

Assume each die has value 1. Then we have $10-(1 \cdot 7)=3$ left. This is to be split among 7 die. By stars and bars, we have $\binom{3+7-1}{3}=\binom{9}{3}=\boxed{84}.$ ~mathboy282

Video Solution 1

https://youtu.be/HVn1WV80ZIU

~savannahsolver

Video Solution 2

https://youtu.be/5UojVH4Cqqs?t=5381

~ pi_is_3.14

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png