Difference between revisions of "2018 AMC 10A Problems/Problem 16"

m (Solution)
(Video Solution 2)
 
(37 intermediate revisions by 16 users not shown)
Line 1: Line 1:
 +
==Problem==
 +
 
Right triangle <math>ABC</math> has leg lengths <math>AB=20</math> and <math>BC=21</math>. Including <math>\overline{AB}</math> and <math>\overline{BC}</math>, how many line segments with integer length can be drawn from vertex <math>B</math> to a point on hypotenuse <math>\overline{AC}</math>?
 
Right triangle <math>ABC</math> has leg lengths <math>AB=20</math> and <math>BC=21</math>. Including <math>\overline{AB}</math> and <math>\overline{BC}</math>, how many line segments with integer length can be drawn from vertex <math>B</math> to a point on hypotenuse <math>\overline{AC}</math>?
  
Line 9: Line 11:
 
</math>
 
</math>
  
==Solution==
+
==Solution 1==
 +
 
 +
<asy>
 +
unitsize(4);
 +
pair A, B, C, E, P;
 +
A=(-20, 0);
 +
B=origin;
 +
C=(0,21);
 +
E=(-21, 20);
 +
P=extension(B,E, A, C);
 +
draw(A--B--C--cycle);
 +
draw(B--P);
 +
dot("$A$", A, SW);
 +
dot("$B$", B, SE);
 +
dot("$C$", C, NE);
 +
dot("$P$", P, NW);
 +
</asy>
 +
 
 +
As the problem has no diagram, we draw a diagram. The hypotenuse has length <math>29</math>. Let <math>P</math> be the foot of the altitude from <math>B</math> to <math>AC</math>. Note that <math>BP</math> is the shortest possible length of any segment. Writing the area of the triangle in two ways, we can solve for <math>BP=\dfrac{20\cdot  21}{29}</math>, which is between <math>14</math> and <math>15</math>.
 +
 
 +
Let the line segment be <math>BX</math>, with <math>X</math> on <math>AC</math>. As you move <math>X</math> along the hypotenuse from <math>A</math> to <math>P</math>, the length of <math>BX</math> strictly decreases, hitting all the integer values from <math>20, 19, \dots 15</math> (IVT). Similarly, moving <math>X</math> from <math>P</math> to <math>C</math> hits all the integer values from <math>15, 16, \dots, 21</math>. This is a total of <math>\boxed{(D) 13}</math> distinct line segments.
 +
(asymptote diagram added by elements2015)
 +
 
 +
==Solution 2 - Circles==
 +
Note that if a circle with an integer radius <math>r</math> centered at vertex <math>B</math> intersects hypotenuse <math>\overline{AB}</math>, the lines drawn from <math>B</math> to the points of intersection are integer lengths. As in the previous solution, the shortest distance <math>14<\overline{BP}<15</math>. As a result, a circle of <math>14</math> will <b>not</b> reach the hypotenuse and thus does not intersect it. We also know that a circle of radius <math>21</math> intersects the hypotenuse once and a circle of radius <math>\{15, 16, 17, 18, 19, 20 \}</math> intersects the hypotenuse twice. Quick graphical thinking or Euclidean construction will prove this.
 +
 
 +
<asy>
 +
unitsize(4);
 +
pair A, B, C, E, P;
 +
A=(-20, 0);
 +
B=origin;
 +
C=(0,21);
 +
E=(-21, 20);
 +
P=extension(B,E, A, C);
 +
draw(A--B--C--cycle);
 +
draw(B--P);
 +
dot("$A$", A, SW);
 +
dot("$B$", B, SE);
 +
dot("$C$", C, NE);
 +
dot("$P$", P, S);
 +
draw(arc((0,0),21, 90, 180));
 +
draw(arc((0,0),20, 90, 180));
 +
draw(arc((0,0),19, 90, 180));
 +
draw(arc((0,0),18, 90, 180));
 +
draw(arc((0,0),17, 90, 180));
 +
draw(arc((0,0),16, 90, 180));
 +
draw(arc((0,0),15, 90, 180));
 +
</asy>
  
The hypotenuse has length <math>29</math>. Let <math>P</math> be the foot of the altitude from <math>B</math> to <math>AC</math>. Note that <math>BP</math> is the shortest possible length of any segment. Writing the area of the triangle in two ways, we can solve for <math>BP=\dfrac{20\cdot  21}{29}</math>, which is between <math>14</math> and <math>15</math>.
+
It follows that we can draw circles of radii <math>15, 16, 17, 18, 19,</math> and <math>20,</math> that each contribute <b>two</b> integer lengths (since these circles intersect the hypotenuse twice) from <math>B</math> to <math>\overline{AC}</math> and one circle of radius <math>21</math> that contributes only one such segment. Our answer is then <cmath>6 \cdot 2 + 1 = 13 \implies \boxed{D}</cmath> ~samrocksnature
  
Let the line segment be <math>BX</math>, with <math>X</math> on <math>AC</math>. As you move <math>X</math> along the hypotenuse from <math>A</math> to <math>P</math>, the length of <math>BX</math> strictly decreases, hitting all the integer values from <math>20, 19, \dots 15</math>. Similarly, moving <math>X</math> from <math>P</math> to <math>C</math> hits all the integer values from <math>15, 16, \dots, 21</math>. This is a total of <math>\boxed{13}</math> line segments.
+
==Video Solution 1(The Beauty of Math)==
 +
https://youtu.be/M22S82Am2zM
 +
 
 +
~IceMatrix
 +
 
 +
== Video Solution 2 by OmegaLearn ==
 +
https://youtu.be/4_x1sgcQCp4?t=3790
 +
 
 +
~ pi_is_3.14
  
 
==See Also==
 
==See Also==
  
{{AMC10 box|year=2018|ab=A|num-b=9|num-a=11}}
+
{{AMC10 box|year=2018|ab=A|num-b=15|num-a=17}}
 
{{MAA Notice}}
 
{{MAA Notice}}
 +
 +
[[Category:Introductory Geometry Problems]]

Latest revision as of 03:32, 23 January 2023

Problem

Right triangle $ABC$ has leg lengths $AB=20$ and $BC=21$. Including $\overline{AB}$ and $\overline{BC}$, how many line segments with integer length can be drawn from vertex $B$ to a point on hypotenuse $\overline{AC}$?

$\textbf{(A) }5 \qquad \textbf{(B) }8 \qquad \textbf{(C) }12 \qquad \textbf{(D) }13 \qquad \textbf{(E) }15 \qquad$

Solution 1

[asy] unitsize(4); pair A, B, C, E, P; A=(-20, 0); B=origin; C=(0,21); E=(-21, 20); P=extension(B,E, A, C); draw(A--B--C--cycle); draw(B--P); dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, NE); dot("$P$", P, NW); [/asy]

As the problem has no diagram, we draw a diagram. The hypotenuse has length $29$. Let $P$ be the foot of the altitude from $B$ to $AC$. Note that $BP$ is the shortest possible length of any segment. Writing the area of the triangle in two ways, we can solve for $BP=\dfrac{20\cdot  21}{29}$, which is between $14$ and $15$.

Let the line segment be $BX$, with $X$ on $AC$. As you move $X$ along the hypotenuse from $A$ to $P$, the length of $BX$ strictly decreases, hitting all the integer values from $20, 19, \dots 15$ (IVT). Similarly, moving $X$ from $P$ to $C$ hits all the integer values from $15, 16, \dots, 21$. This is a total of $\boxed{(D) 13}$ distinct line segments. (asymptote diagram added by elements2015)

Solution 2 - Circles

Note that if a circle with an integer radius $r$ centered at vertex $B$ intersects hypotenuse $\overline{AB}$, the lines drawn from $B$ to the points of intersection are integer lengths. As in the previous solution, the shortest distance $14<\overline{BP}<15$. As a result, a circle of $14$ will not reach the hypotenuse and thus does not intersect it. We also know that a circle of radius $21$ intersects the hypotenuse once and a circle of radius $\{15, 16, 17, 18, 19, 20 \}$ intersects the hypotenuse twice. Quick graphical thinking or Euclidean construction will prove this.

[asy] unitsize(4); pair A, B, C, E, P; A=(-20, 0); B=origin; C=(0,21); E=(-21, 20); P=extension(B,E, A, C); draw(A--B--C--cycle); draw(B--P); dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, NE); dot("$P$", P, S); draw(arc((0,0),21, 90, 180)); draw(arc((0,0),20, 90, 180)); draw(arc((0,0),19, 90, 180)); draw(arc((0,0),18, 90, 180)); draw(arc((0,0),17, 90, 180)); draw(arc((0,0),16, 90, 180)); draw(arc((0,0),15, 90, 180)); [/asy]

It follows that we can draw circles of radii $15, 16, 17, 18, 19,$ and $20,$ that each contribute two integer lengths (since these circles intersect the hypotenuse twice) from $B$ to $\overline{AC}$ and one circle of radius $21$ that contributes only one such segment. Our answer is then \[6 \cdot 2 + 1 = 13 \implies \boxed{D}\] ~samrocksnature

Video Solution 1(The Beauty of Math)

https://youtu.be/M22S82Am2zM

~IceMatrix

Video Solution 2 by OmegaLearn

https://youtu.be/4_x1sgcQCp4?t=3790

~ pi_is_3.14

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png