Difference between revisions of "2018 AMC 10A Problems/Problem 24"

(Solution 1)
(hardness of problem)
Line 13: Line 13:
 
</math>
 
</math>
  
==hardness of problem==
+
==Hardness of Problem==
  
 
The hardness of this problem is average medium or on a scale of 10, a 5. The problem needs no extension or addition of lines, as all you need to know is the angle bisector theorem and how to calculate the area of divided portions.
 
The hardness of this problem is average medium or on a scale of 10, a 5. The problem needs no extension or addition of lines, as all you need to know is the angle bisector theorem and how to calculate the area of divided portions.
  
 
~justin6688
 
~justin6688
 +
 +
Additionally, the problem is quite misplaced and simply uses area ratios along with angle bisector. It could easily be a problem number 15.
  
 
== Solution 1 ==
 
== Solution 1 ==

Revision as of 12:59, 23 February 2021

The following problem is from both the 2018 AMC 12A #18 and 2018 AMC 10A #24, so both problems redirect to this page.

Problem

Triangle $ABC$ with $AB=50$ and $AC=10$ has area $120$. Let $D$ be the midpoint of $\overline{AB}$, and let $E$ be the midpoint of $\overline{AC}$. The angle bisector of $\angle BAC$ intersects $\overline{DE}$ and $\overline{BC}$ at $F$ and $G$, respectively. What is the area of quadrilateral $FDBG$?

$\textbf{(A) }60 \qquad \textbf{(B) }65 \qquad \textbf{(C) }70 \qquad \textbf{(D) }75 \qquad \textbf{(E) }80 \qquad$

Hardness of Problem

The hardness of this problem is average medium or on a scale of 10, a 5. The problem needs no extension or addition of lines, as all you need to know is the angle bisector theorem and how to calculate the area of divided portions.

~justin6688

Additionally, the problem is quite misplaced and simply uses area ratios along with angle bisector. It could easily be a problem number 15.

Solution 1

Let $BC = a$, $BG = x$, $GC = y$, and the length of the perpendicular to $BC$ through $A$ be $h$. By angle bisector theorem, we have that \[\frac{50}{x} = \frac{10}{y},\] where $y = -x+a$. Therefore substituting we have that $BG=\frac{5a}{6}$. By similar triangles, we have that $DF=\frac{5a}{12}$, and the height of this trapezoid is $\frac{h}{2}$. Then, we have that $\frac{ah}{2}=120$. We wish to compute $\frac{5a}{8}\cdot\frac{h}{2}$, and we have that it is $\boxed{75}$ by substituting.

Solution 2

For this problem, we have $\triangle{ADE}\sim\triangle{ABC}$ because of SAS and $DE = \frac{BC}{2}$. Therefore, $\bigtriangleup ADE$ is a quarter of the area of $\bigtriangleup ABC$, which is $30$. Subsequently, we can compute the area of quadrilateral $BDEC$ to be $120 - 30 = 90$. Using the angle bisector theorem in the same fashion as the previous problem, we get that $\overline{BG}$ is $5$ times the length of $\overline{GC}$. We want the larger piece, as described by the problem. Because the heights are identical, one area is $5$ times the other, and $\frac{5}{6} \cdot 90 = \boxed{75}$.

Solution 3

The area of $\bigtriangleup ABG$ to the area of $\bigtriangleup ACG$ is $5:1$ by Law of Sines. So the area of $\bigtriangleup ABG$ is $100$. Since $\overline{DE}$ is the midsegment of $\bigtriangleup ABC$, so $\overline{DF}$ is the midsegment of $\bigtriangleup ABG$ . So the area of $\bigtriangleup ADF$ to the area of $\bigtriangleup ABG$ is $1:4$ , so the area of $\bigtriangleup ACG$ is $25$, by similar triangles. Therefore the area of quad $FDBG$ is $100-25=\boxed{75}$

Solution 4

The area of quadrilateral $FDBG$ is the area of $\bigtriangleup ABG$ minus the area of $\bigtriangleup ADF$. Notice, $\overline{DE} || \overline{BC}$, so $\bigtriangleup ABG \sim \bigtriangleup ADF$, and since $\overline{AD}:\overline{AB}=1:2$, the area of $\bigtriangleup ADF:\bigtriangleup ABG=(1:2)^2=1:4$. Given that the area of $\bigtriangleup ABC$ is $120$, using $\frac{bh}{2}$ on side $AB$ yields $\frac{50h}{2}=120\implies h=\frac{240}{50}=\frac{24}{5}$. Using the Angle Bisector Theorem, $\overline{BG}:\overline{BC}=50:(10+50)=5:6$, so the height of $\bigtriangleup ABG: \bigtriangleup ACB=5:6$. Therefore our answer is $\big[ FDBG\big] = \big[ABG\big]-\big[ ADF\big] = \big[ ABG\big]\big(1-\frac{1}{4}\big)=\frac{3}{4}\cdot \frac{bh}{2}=\frac{3}{8}\cdot 50\cdot \frac{5}{6}\cdot \frac{24}{5}=\frac{3}{8}\cdot 200=\boxed{75}$

Solution 5: Trig

We try to find the area of quadrilateral $FDBG$ by subtracting the area outside the quadrilateral but inside triangle $ABC$. Note that the area of $\triangle ADE$ is equal to $\frac{1}{2} \cdot 25 \cdot 5 \cdot \sin{A}$ and the area of triangle $ABC$ is equal to $\frac{1}{2} \cdot 50 \cdot 10 \cdot \sin A$. The ratio $\frac{[ADE]}{[ABC]}$ is thus equal to $\frac{1}{4}$ and the area of triangle $ADE$ is $\frac{1}{4} \cdot 120 = 30$. Let side $BC$ be equal to $6x$, then $BG = 5x, GC = x$ by the angle bisector theorem. Similarly, we find the area of triangle $AGC$ to be $\frac{1}{2} \cdot 10 \cdot x \cdot \sin C$ and the area of triangle $ABC$ to be $\frac{1}{2} \cdot 6x \cdot 10 \cdot \sin C$. A ratio between these two triangles yields $\frac{[ACG]}{[ABC]} = \frac{x}{6x} = \frac{1}{6}$, so $[AGC] = 20$. Now we just need to find the area of triangle $AFE$ and subtract it from the combined areas of $[ADE]$ and $[ACG]$, since we count it twice. Note that the angle bisector theorem also applies for $\triangle ADE$ and $\frac{AE}{AD} = \frac{1}{5}$, so thus $\frac{EF}{ED} = \frac{1}{6}$ and we find $[AFE] = \frac{1}{6} \cdot 30 = 5$, and the area outside $FDBG$ must be $[ADE] + [AGC] - [AFE] = 30 + 20 - 5 = 45$, and we finally find $[FDBG] = [ABC] - 45 = 120 -45 = \boxed{75}$, and we are done.

Solution 6: Areas

[asy] draw((0,0)--(1,3)--(5,0)--cycle); draw((0,0)--(2,2.25)); draw((0.5,1.5)--(2.5,0)); label("A",(0,0),SW); label("B",(5,0),SE); label("C",(1,3),N); label("G",(2,2.25),NE); label("D",(2.5,0),S); label("E",(0.5,1.5),NW); label("3Y",(2.5,0.75),N); label("Y",(1,0.2),N); label("X",(0.5,0.5),N); label("3X",(1.25,1.75),N); [/asy] Give triangle $AEF$ area X. Then, by similarity, since $\frac{AC}{AE} = \frac{2}{1}$, $ACG$ has area 4X. Thus, $FGCE$ has area 3X. Doing the same for triangle $AGB$, we get that triangle $AFD$ has area Y and quadrilateral $GFDB$ has area 3Y. Since $AEF$ has the same height as $AFD$, the ratios of the areas is equal to the ratios of the bases. Because of the Angle Bisector Theorem, $\frac{CG}{GB} = \frac{1}{5}$. So, $\frac{[AEF]}{[AFD]} = \frac{1}{5}$. Since $AEF$ has area X, we can write the equation 5X = Y and substitute 5X for Y. [asy] draw((0,0)--(1,3)--(5,0)--cycle); draw((0,0)--(2,2.25)); draw((0.5,1.5)--(2.5,0)); label("A",(0,0),SW); label("B",(5,0),SE); label("C",(1,3),N); label("G",(2,2.25),NE); label("D",(2.5,0),S); label("E",(0.5,1.5),NW); label("",(2.5,0.75),N); label("",(1,0.2),N); label("F", (1, 1.5), N); label("",(0.5,1.5),N); label("",(1.25,1.75),N); [/asy] Now we can solve for X by adding up all the sums. X + 3X + 5X + 15X = 120, so X = 5. Since we want to find $GFDB$, we substitute 5 for 15X to get $\boxed{75}$. $\sim$krishkhushi09

Video Solution by Richard Rusczyk

https://artofproblemsolving.com/videos/amc/2018amc10a/469

~ dolphin7

Video Solution

https://youtu.be/4_x1sgcQCp4?t=4898

~ pi_is_3.14

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2018 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png