2018 AMC 10A Problems/Problem 8

Revision as of 17:07, 8 February 2018 by Nivek (talk | contribs) (Solution)

Joe has a collection of 23 coins, consisting of 5-cent coins, 10-cent coins, and 25-cent coins. He has 3 more 10-cent coins than 5-cent coins, and the total value of his collection is 320 cents. How many more 25-cent coins does Joe have than 5-cent coins?

$\textbf{(A) }   0   \qquad        \textbf{(B) }   1   \qquad    \textbf{(C) }   2   \qquad   \textbf{(D) }  3  \qquad  \textbf{(E) }   4$

Solution

Let $x$ be the number of 5-cent stamps that Joe has. Therefore, he must have $x+3$ 10-cent stamps and $23-(x+3)-x$ 25-cent stamps. Since the toal value of his collection is 320 cents, we can write \begin{*align} 5x+10(x+3)+25(23-(x+3)-x) & =320 \\ 5x+10(x+3)+25(20-2x) & =320 \\ 5x+10x+30+500-50x & =320 \\ 35x & =210 \\ x=6 \ \end{*align} Joe has 6 5-cent stamps, 9 10-cent stamps, and 8 25-cent stamps. Thus, our answer is $8-6=\boxed{2}$

~Nivek

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS