Difference between revisions of "2018 AMC 10A Problems/Problem 9"

m (See Also)
(Solution 2)
Line 26: Line 26:
 
===Solution 2===
 
===Solution 2===
 
Let the base length of the small triangle be <math>x</math>. Then, there is a triangle <math>ADE</math> encompassing the 7 small triangles and sharing the top angle with a base length of <math>4x</math>. Because the area is proportional to the square of the side, let the base <math>BC</math> be <math>\sqrt{40}x</math>. Then triangle <math>ADE</math> has an area of 16. So the area is <math>40 - 16 = \boxed{24}</math>.
 
Let the base length of the small triangle be <math>x</math>. Then, there is a triangle <math>ADE</math> encompassing the 7 small triangles and sharing the top angle with a base length of <math>4x</math>. Because the area is proportional to the square of the side, let the base <math>BC</math> be <math>\sqrt{40}x</math>. Then triangle <math>ADE</math> has an area of 16. So the area is <math>40 - 16 = \boxed{24}</math>.
 +
 +
===Solution 3===
 +
Notice <math>\big[DBCE\big]=\big[ABC\big]-\big[ADE\big]</math>.
 +
Let the base of the small triangles of area 1 be <math>x</math>, then the base length of <math>\Delta ADE=4x</math>. Notice, <math>\big(\frac{DE}{BC}\big)^2=\frac{1}{40}\implies \frac{x}{BC}=\frac{1}{\sqrt{40}}</math>, then <math>4x=\frac{4BC}{\sqrt{40}}\implies \big[ADE\big]=\big(\frac{4}{\sqrt{40}}\big)^2\cdot \big[ABC\big]=\frac{2}{5}\big[ABC\big]</math>
 +
Thus, <math>\big[DBCE\big]=\big[ABC\big]-\big[ADE\big]=\big[ABC\big]\big(1-\frac{2}{5}\big)=\frac{3}{5}\cdot 40=\boxed{24}</math>
 +
 +
Solution by ktong
 +
 
== See Also ==
 
== See Also ==
  
 
{{AMC10 box|year=2018|ab=A|num-b=8|num-a=10}}
 
{{AMC10 box|year=2018|ab=A|num-b=8|num-a=10}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 21:44, 9 February 2018

All of the triangles in the diagram below are similar to iscoceles triangle $ABC$, in which $AB=AC$. Each of the 7 smallest triangles has area 1, and $\triangle ABC$ has area 40. What is the area of trapezoid $DBCE$?

[asy] unitsize(5); dot((0,0)); dot((60,0)); dot((50,10)); dot((10,10)); dot((30,30)); draw((0,0)--(60,0)--(50,10)--(30,30)--(10,10)--(0,0)); draw((10,10)--(50,10)); label("$B$",(0,0),SW); label("$C$",(60,0),SE); label("$E$",(50,10),E); label("$D$",(10,10),W); label("$A$",(30,30),N); draw((10,10)--(15,15)--(20,10)--(25,15)--(30,10)--(35,15)--(40,10)--(45,15)--(50,10)); draw((15,15)--(45,15)); [/asy]

$\textbf{(A) }   16   \qquad        \textbf{(B) }   18   \qquad    \textbf{(C) }   20   \qquad   \textbf{(D) }  22 \qquad  \textbf{(E) }   24$

Solutions

Solution 1

Let $x$ be the area of $ADE$. Note that $x$ is comprised of the $7$ small isosceles triangles and a triangle similar to $ADE$ with side length ratio $3:4$ (so an area ratio of $9:16$). Thus, we have \[x=7+\dfrac{9}{16}x\] This gives $x=16$, so the area of $DBCE=40-x=\boxed{24}$.

Solution 2

Let the base length of the small triangle be $x$. Then, there is a triangle $ADE$ encompassing the 7 small triangles and sharing the top angle with a base length of $4x$. Because the area is proportional to the square of the side, let the base $BC$ be $\sqrt{40}x$. Then triangle $ADE$ has an area of 16. So the area is $40 - 16 = \boxed{24}$.

Solution 3

Notice $\big[DBCE\big]=\big[ABC\big]-\big[ADE\big]$. Let the base of the small triangles of area 1 be $x$, then the base length of $\Delta ADE=4x$. Notice, $\big(\frac{DE}{BC}\big)^2=\frac{1}{40}\implies \frac{x}{BC}=\frac{1}{\sqrt{40}}$, then $4x=\frac{4BC}{\sqrt{40}}\implies \big[ADE\big]=\big(\frac{4}{\sqrt{40}}\big)^2\cdot \big[ABC\big]=\frac{2}{5}\big[ABC\big]$ Thus, $\big[DBCE\big]=\big[ABC\big]-\big[ADE\big]=\big[ABC\big]\big(1-\frac{2}{5}\big)=\frac{3}{5}\cdot 40=\boxed{24}$

Solution by ktong

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS