Difference between revisions of "2018 AMC 10A Problems/Problem 9"
(→Solution 5) |
m |
||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | |||
All of the triangles in the diagram below are similar to isosceles triangle <math>ABC</math>, in which <math>AB=AC</math>. Each of the 7 smallest triangles has area 1, and <math>\triangle ABC</math> has area 40. What is the area of trapezoid <math>DBCE</math>? | All of the triangles in the diagram below are similar to isosceles triangle <math>ABC</math>, in which <math>AB=AC</math>. Each of the 7 smallest triangles has area 1, and <math>\triangle ABC</math> has area 40. What is the area of trapezoid <math>DBCE</math>? | ||
Line 20: | Line 22: | ||
<math>\textbf{(A) } 16 \qquad \textbf{(B) } 18 \qquad \textbf{(C) } 20 \qquad \textbf{(D) } 22 \qquad \textbf{(E) } 24 </math> | <math>\textbf{(A) } 16 \qquad \textbf{(B) } 18 \qquad \textbf{(C) } 20 \qquad \textbf{(D) } 22 \qquad \textbf{(E) } 24 </math> | ||
− | + | ||
− | + | ==Solution 1== | |
Let <math>x</math> be the area of <math>ADE</math>. Note that <math>x</math> is comprised of the <math>7</math> small isosceles triangles and a triangle similar to <math>ADE</math> with side length ratio <math>3:4</math> (so an area ratio of <math>9:16</math>). Thus, we have <cmath>x=7+\dfrac{9}{16}x</cmath> This gives <math>x=16</math>, so the area of <math>DBCE=40-x=\boxed{24}</math>. | Let <math>x</math> be the area of <math>ADE</math>. Note that <math>x</math> is comprised of the <math>7</math> small isosceles triangles and a triangle similar to <math>ADE</math> with side length ratio <math>3:4</math> (so an area ratio of <math>9:16</math>). Thus, we have <cmath>x=7+\dfrac{9}{16}x</cmath> This gives <math>x=16</math>, so the area of <math>DBCE=40-x=\boxed{24}</math>. | ||
− | + | ==Solution 2== | |
Let the base length of the small triangle be <math>x</math>. Then, there is a triangle <math>ADE</math> encompassing the 7 small triangles and sharing the top angle with a base length of <math>4x</math>. Because the area is proportional to the square of the side, let the base <math>BC</math> be <math>\sqrt{40}x</math>. Then triangle <math>ADE</math> has an area of 16. So the area is <math>40 - 16 = \boxed{24}</math>. | Let the base length of the small triangle be <math>x</math>. Then, there is a triangle <math>ADE</math> encompassing the 7 small triangles and sharing the top angle with a base length of <math>4x</math>. Because the area is proportional to the square of the side, let the base <math>BC</math> be <math>\sqrt{40}x</math>. Then triangle <math>ADE</math> has an area of 16. So the area is <math>40 - 16 = \boxed{24}</math>. | ||
− | + | ==Solution 3== | |
Notice <math>\big[DBCE\big]=\big[ABC\big]-\big[ADE\big]</math>. | Notice <math>\big[DBCE\big]=\big[ABC\big]-\big[ADE\big]</math>. | ||
Let the base of the small triangles of area 1 be <math>x</math>, then the base length of <math>\Delta ADE=4x</math>. Notice, <math>\big(\frac{DE}{BC}\big)^2=\frac{1}{40}\implies \frac{x}{BC}=\frac{1}{\sqrt{40}}</math>, then <math>4x=\frac{4BC}{\sqrt{40}}\implies \big[ADE\big]=\big(\frac{4}{\sqrt{40}}\big)^2\cdot \big[ABC\big]=\frac{2}{5}\big[ABC\big]</math> | Let the base of the small triangles of area 1 be <math>x</math>, then the base length of <math>\Delta ADE=4x</math>. Notice, <math>\big(\frac{DE}{BC}\big)^2=\frac{1}{40}\implies \frac{x}{BC}=\frac{1}{\sqrt{40}}</math>, then <math>4x=\frac{4BC}{\sqrt{40}}\implies \big[ADE\big]=\big(\frac{4}{\sqrt{40}}\big)^2\cdot \big[ABC\big]=\frac{2}{5}\big[ABC\big]</math> | ||
Line 34: | Line 36: | ||
Solution by ktong | Solution by ktong | ||
− | + | ==Solution 4== | |
The area of <math>ADE</math> is 16 times the area of the small triangle, as they are similar and their side ratio is <math>4:1</math>. Therefore the area of the trapezoid is <math>40-16=\boxed{24}</math>. | The area of <math>ADE</math> is 16 times the area of the small triangle, as they are similar and their side ratio is <math>4:1</math>. Therefore the area of the trapezoid is <math>40-16=\boxed{24}</math>. | ||
− | + | ==Solution 5== | |
− | You can see that we can create a "stack" of 5 triangles congruent to the 7 small triangles shown here, arranged in a row above those 7, whose total area would be 5. Similarly, we can create another row of 3, and finally 1 more at the top, as follows. We know this cumulative area will be <math>7+5+3+1=16</math>, so to find the area of such trapezoid <math>BCED</math>, we just take <math>40-16=\boxed{24}</math>, like so. | + | You can see that we can create a "stack" of 5 triangles congruent to the 7 small triangles shown here, arranged in a row above those 7, whose total area would be 5. Similarly, we can create another row of 3, and finally 1 more at the top, as follows. We know this cumulative area will be <math>7+5+3+1=16</math>, so to find the area of such trapezoid <math>BCED</math>, we just take <math>40-16=\boxed{24}</math>, like so. ∎ --anna0kear |
− | == See Also == | + | ==See Also== |
{{AMC10 box|year=2018|ab=A|num-b=8|num-a=10}} | {{AMC10 box|year=2018|ab=A|num-b=8|num-a=10}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 16:05, 11 February 2018
Problem
All of the triangles in the diagram below are similar to isosceles triangle , in which . Each of the 7 smallest triangles has area 1, and has area 40. What is the area of trapezoid ?
Solution 1
Let be the area of . Note that is comprised of the small isosceles triangles and a triangle similar to with side length ratio (so an area ratio of ). Thus, we have This gives , so the area of .
Solution 2
Let the base length of the small triangle be . Then, there is a triangle encompassing the 7 small triangles and sharing the top angle with a base length of . Because the area is proportional to the square of the side, let the base be . Then triangle has an area of 16. So the area is .
Solution 3
Notice . Let the base of the small triangles of area 1 be , then the base length of . Notice, , then Thus,
Solution by ktong
Solution 4
The area of is 16 times the area of the small triangle, as they are similar and their side ratio is . Therefore the area of the trapezoid is .
Solution 5
You can see that we can create a "stack" of 5 triangles congruent to the 7 small triangles shown here, arranged in a row above those 7, whose total area would be 5. Similarly, we can create another row of 3, and finally 1 more at the top, as follows. We know this cumulative area will be , so to find the area of such trapezoid , we just take , like so. ∎ --anna0kear
See Also
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.