Difference between revisions of "2018 AMC 10A Problems/Problem 9"
(→Solution 2) |
|||
Line 20: | Line 20: | ||
<math>\textbf{(A) } 16 \qquad \textbf{(B) } 18 \qquad \textbf{(C) } 20 \qquad \textbf{(D) } 22 \qquad \textbf{(E) } 24 </math> | <math>\textbf{(A) } 16 \qquad \textbf{(B) } 18 \qquad \textbf{(C) } 20 \qquad \textbf{(D) } 22 \qquad \textbf{(E) } 24 </math> | ||
− | + | ==Solutions== | |
− | ==Solution 1== | + | ===Solution 1=== |
Let <math>x</math> be the area of <math>ADE</math>. Note that <math>x</math> is comprised of the <math>7</math> small isosceles triangles and a triangle similar to <math>ADE</math> with side length ratio <math>3:4</math> (so an area ratio of <math>9:16</math>). Thus, we have <cmath>x=7+\dfrac{9}{16}x</cmath> This gives <math>x=16</math>, so the area of <math>DBCE=40-x=\boxed{24}</math>. | Let <math>x</math> be the area of <math>ADE</math>. Note that <math>x</math> is comprised of the <math>7</math> small isosceles triangles and a triangle similar to <math>ADE</math> with side length ratio <math>3:4</math> (so an area ratio of <math>9:16</math>). Thus, we have <cmath>x=7+\dfrac{9}{16}x</cmath> This gives <math>x=16</math>, so the area of <math>DBCE=40-x=\boxed{24}</math>. | ||
− | =Solution 2= | + | ===Solution 2=== |
Let the base length of the small triangle be <math>x</math>. Then, there is a triangle <math>ADE</math> encompassing the 7 small triangles and sharing the top angle with a base length of <math>4x</math>. Because the area is proportional to the square of the side, let the base <math>BC</math> be <math>\sqrt{40}x</math>. Then triangle <math>ADE</math> has an area of 16. So the area is <math>40 - 16 = \boxed{24}</math>. | Let the base length of the small triangle be <math>x</math>. Then, there is a triangle <math>ADE</math> encompassing the 7 small triangles and sharing the top angle with a base length of <math>4x</math>. Because the area is proportional to the square of the side, let the base <math>BC</math> be <math>\sqrt{40}x</math>. Then triangle <math>ADE</math> has an area of 16. So the area is <math>40 - 16 = \boxed{24}</math>. | ||
+ | == See Also == | ||
+ | |||
+ | {{AMC10 box|year=2018|ab=A|num-b=7|num-a=9}} | ||
+ | {{MAA Notice}} |
Revision as of 20:56, 9 February 2018
All of the triangles in the diagram below are similar to iscoceles triangle , in which . Each of the 7 smallest triangles has area 1, and has area 40. What is the area of trapezoid ?
Solutions
Solution 1
Let be the area of . Note that is comprised of the small isosceles triangles and a triangle similar to with side length ratio (so an area ratio of ). Thus, we have This gives , so the area of .
Solution 2
Let the base length of the small triangle be . Then, there is a triangle encompassing the 7 small triangles and sharing the top angle with a base length of . Because the area is proportional to the square of the side, let the base be . Then triangle has an area of 16. So the area is .
See Also
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.