Difference between revisions of "2018 AMC 10B Problems/Problem 13"

Line 9: Line 9:
 
\textbf{(E) }1009 \qquad
 
\textbf{(E) }1009 \qquad
 
</math>
 
</math>
 +
 +
==Solution==
 +
Note that <math>10^{2k}+1</math> for some odd <math>k</math> will suffice <math>\mod {101}</math>. Each <math>2k \in \{2,4,6,\dots,2018\}</math>, so the answer is <math>\boxed{\textbf{(C) } 505}</math>
 +
(AOPS12142015)

Revision as of 15:04, 16 February 2018

Problem

How many of the first $2018$ numbers in the sequence $101, 1001, 10001, 100001, \dots$ are divisible by $101$?

$\textbf{(A) }253 \qquad \textbf{(B) }504 \qquad \textbf{(C) }505 \qquad \textbf{(D) }506  \qquad \textbf{(E) }1009 \qquad$

Solution

Note that $10^{2k}+1$ for some odd $k$ will suffice $\mod {101}$. Each $2k \in \{2,4,6,\dots,2018\}$, so the answer is $\boxed{\textbf{(C) } 505}$ (AOPS12142015)

Invalid username
Login to AoPS