# Difference between revisions of "2018 AMC 10B Problems/Problem 21"

## Problem

Mary chose an even $4$-digit number $n$. She wrote down all the divisors of $n$ in increasing order from left to right: $1,2,...,\dfrac{n}{2},n$. At some moment Mary wrote $323$ as a divisor of $n$. What is the smallest possible value of the next divisor written to the right of $323$? $\textbf{(A) } 324 \qquad \textbf{(B) } 330 \qquad \textbf{(C) } 340 \qquad \textbf{(D) } 361 \qquad \textbf{(E) } 646$

## Solution 1

Since prime factorizing $323$ gives you $17 \cdot 19$, the desired answer needs to be a multiple of $17$ or $19$, this is because if it is not a multiple of $17$ or $19$, $n$ will be more than a $4$ digit number. For example, if the answer were to instead be $324$, $n$ would have to be a multiple of $2^2 * 3^4 * 17 * 19$ for both $323$ and $324$ to be a valid factor, meaning $n$ would have to be at least $104652$, which is too big. Looking at the answer choices, $\text{(A) }324$ and $\text{(B) }330$ are both not a multiple of neither 17 nor 19, $\text{(C) }340$ is divisible by $17$. $\text{(D) }361$ is divisible by $19$, and $\text{(E) }646$ is divisible by both $17$ and $19$. Since $\fbox{\text{(C) }340}$ is the smallest number divisible by either $17$ or $19$ it is the answer. Checking, we can see that $n$ would be $6460$, a four-digit number. Note that $n$ is also divisible by $2$, one of the listed divisors of $n$. (If $n$ was not divisible by $2$, we would need to look for a different divisor)

-Edited by Shurong.ge

## Solution 2

Let the next largest divisor be $k$. Suppose $\gcd(k,323)=1$. Then, as $323|n, k|n$, therefore, $323\cdot k|n.$ However, because $k>323$, $323k>323\cdot 324>9999$. Therefore, $\gcd(k,323)>1$. Note that $323=17\cdot 19$. Therefore, the smallest the GCD can be is $17$ and our answer is $323+17=\boxed{\text{(C) }340}$.

## Solution 3

Again, recognize $323=17 \cdot 19$. The 4-digit number is even, so its prime factorization must then be $17 \cdot 19 \cdot 2 \cdot n$. Also, $1000\leq 646n \leq 9998$, so $2 \leq n \leq 15$. Since $15 \cdot 2=30$, the prime factorization of the number after $323$ needs to have either $17$ or $19$. The next highest product after $17 \cdot 19$ is $17 \cdot 2 \cdot 10 =340$ or $19 \cdot 2 \cdot 9 =342$ $\implies \boxed{\text{(C) }340}$.

You can also tell by inspection that $19\cdot18 > 20\cdot17$, because $19\cdot18$ is closer to the side lengths of a square, which maximizes the product.

~bjhhar

## See Also

 2018 AMC 10B (Problems • Answer Key • Resources) Preceded byProblem 20 Followed byProblem 22 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions
 2018 AMC 12B (Problems • Answer Key • Resources) Preceded byProblem 18 Followed byProblem 20 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS