Difference between revisions of "2018 AMC 10B Problems/Problem 23"
(→Solution 1) |
|||
Line 1: | Line 1: | ||
− | + | How many ordered pairs <math>(a, b)</math> of positive integers satisfy the equation | |
<cmath>a\cdot b + 63 = 20\cdot \text{lcm}(a, b) + 12\cdot\text{gcd}(a,b),</cmath> | <cmath>a\cdot b + 63 = 20\cdot \text{lcm}(a, b) + 12\cdot\text{gcd}(a,b),</cmath> | ||
where <math>\text{gcd}(a,b)</math> denotes the greatest common divisor of <math>a</math> and <math>b</math>, and <math>\text{lcm}(a,b)</math> denotes their least common multiple? | where <math>\text{gcd}(a,b)</math> denotes the greatest common divisor of <math>a</math> and <math>b</math>, and <math>\text{lcm}(a,b)</math> denotes their least common multiple? |
Revision as of 16:10, 17 February 2018
How many ordered pairs of positive integers satisfy the equation where denotes the greatest common divisor of and , and denotes their least common multiple?
Solution
Let , and . Therefore, . Thus, the equation becomes
Using Simon's Favorite Factoring Trick, we rewrite this equation as
Since and , we have and , or and . This gives us the solutions and . Obviously, the first pair does not work. The second pair can be ordered in two ways. Thus, the answer is . (awesomeag)
See Also
2018 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.