Difference between revisions of "2018 AMC 12A Problems/Problem 23"

(Solution 3 (Nice, I Think?))
(Solution 3 (Nice, I Think?))
Line 35: Line 35:
  
 
==Solution 3 (Nice, I Think?)==
 
==Solution 3 (Nice, I Think?)==
Consider the bisector of <math>\angle ATP.</math> This angle makes an <math>80^{\circ}</math> angle with <math>AP.</math> We claim that <math>MN</math> is parallel to this angle bisector, meaning that the acute angle that <math>MN</math> makes with <math>AP</math> is <math>80^{\circ},</math> meaning that the answer is <math>\boxed{\textbf{(E)}}</math>.
+
The bisector of <math>\angle ATP</math> makes an <math>80^{\circ}</math> angle with <math>PA</math> by basic angle calculations. We claim that <math>MN</math> is parallel to this angle bisector, meaning that the acute angle formed by <math>MN</math> and <math>PA</math> is <math>80^{\circ},</math> meaning that the answer is <math>\boxed{\textbf{(E)}}</math>.
  
 
(sujaykazi)
 
(sujaykazi)
Shoutout to Richard Yi and Mark Kong for working with me to glean the necessary insights for this problem!
+
Shoutout to Richard Yi and Mark Kong for working with me to discover the necessary insights to this problem!
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2018|ab=A|num-b=22|num-a=24}}
 
{{AMC12 box|year=2018|ab=A|num-b=22|num-a=24}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 00:20, 15 February 2018

Problem

In $\triangle PAT,$ $\angle P=36^{\circ},$ $\angle A=56^{\circ},$ and $PA=10.$ Points $U$ and $G$ lie on sides $\overline{TP}$ and $\overline{TA},$ respectively, so that $PU=AG=1.$ Let $M$ and $N$ be the midpoints of segments $\overline{PA}$ and $\overline{UG},$ respectively. What is the degree measure of the acute angle formed by lines $MN$ and $PA?$

$\textbf{(A)} 76 \qquad  \textbf{(B)} 77 \qquad  \textbf{(C)} 78 \qquad  \textbf{(D)} 79 \qquad  \textbf{(E)} 80$

Solution

Let $P$ be the origin, and $PA$ lie on the x axis.

We can find $U=\left(\cos(36), \sin(36)\right)$ and $G=\left(10-\cos(56), \sin(56)\right)$

Then, we have $M=(5, 0)$ and $N=\left(\frac{10+\cos(36)-\cos(56)}{2}, \frac{\sin(36)+\sin(56)}{2}\right)$

Notice that the tangent of our desired points is the the absolute difference between the y coordinates of the two points divided by the absolute difference between the x coordinates of the two points.

This evaluates to \[\frac{\sin(36)+\sin(56)}{\cos(36)-\cos(56)}\] Now, using sum to product identities, we have this equal to \[\frac{2\sin(46)\cos(10)}{-2\sin(46)\sin({-10})}=\frac{\sin(80)}{\cos(80)}=\tan(80)\] so the answer is $\boxed{\textbf{(E)}.}$ (lifeisgood03)

Solution 2 (Overkill)

Note that $X$, the midpoint of major arc $PA$ on $(PAT)$ is the Miquel Point of $PUAG$ (Because $PU = AG$). Then, since $1 = \frac{UN}{NG} = \frac{PM}{MA}$, this spiral similarity carries $M$ to $N$. Thus, we have $\triangle XMN \sim \triangle XAG$, so $\angle XMN = \angle XAG$.

But, we have $\angle XAG = \angle PAG = \angle PAX = 56 - \frac{180 - \angle PXA}{2} =56 - \frac{180 - \angle T}{2} = 56 - \frac{\angle A + \angle P}{2} = 56 - \frac{56+36}{2} = 56 - 46 = 10$; thus $\angle XMN = 10$.

Then, as $X$ is the midpoint of the major arc, it lies on the perpendicular bisector of $PA$, so $\angle XMA = 90$. Since we want the acute angle, we have $\angle NMA = \angle XMA - \angle XMN = 90 - 10 = 80$, so the answer is $\boxed{\textbf{(E)}}$.

(stronto)

Solution 3 (Nice, I Think?)

The bisector of $\angle ATP$ makes an $80^{\circ}$ angle with $PA$ by basic angle calculations. We claim that $MN$ is parallel to this angle bisector, meaning that the acute angle formed by $MN$ and $PA$ is $80^{\circ},$ meaning that the answer is $\boxed{\textbf{(E)}}$.

(sujaykazi) Shoutout to Richard Yi and Mark Kong for working with me to discover the necessary insights to this problem!

See Also

2018 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png