2018 AMC 12A Problems/Problem 25

Revision as of 14:33, 8 February 2018 by Speck (talk | contribs) (Created page with "===Problem=== For a positive integer <math>n</math> and nonzero digits <math>a</math>, <math>b</math>, and <math>c</math>, let <math>A_n</math> be the <math>n</math>-digit in...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

For a positive integer $n$ and nonzero digits $a$, $b$, and $c$, let $A_n$ be the $n$-digit integer each of whose digits is equal to $a$; let $B_n$ be the $n$-digit integer each of whose digits is equal to $b$; and let $C_n$ be the $2n$-digit (not $n$-digit) integer each of whose digits is equal to $c$. What is the greatest possible value of $a+b+c$ for which there are at least two values of $n$ such that $C_n - B_n = A_n^2$?

$\textbf{(A)}\ 12 \qquad\textbf{(B)}\ 14\qquad\textbf{(C)}\ 16\qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 20$