# 2018 AMC 12B Problems/Problem 22

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

Consider polynomials $P(x)$ of degree at most $3$, each of whose coefficients is an element of $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. How many such polynomials satisfy $P(-1) = -9$?

$\textbf{(A) } 110 \qquad \textbf{(B) } 143 \qquad \textbf{(C) } 165 \qquad \textbf{(D) } 220 \qquad \textbf{(E) } 286$

## Solution 1 (Stars and Bars)

Suppose that $P(x)=ax^3+bx^2+cx+d.$ This problem is equivalent to counting the ordered quadruples $(a,b,c,d),$ where all of $a,b,c,$ and $d$ are integers from $0$ through $9$ such that $$P(-1)=-a+b-c+d=-9.$$ Let $a'=9-a$ and $c'=9-c.$ Note that both of $a'$ and $c'$ are integers from $0$ through $9.$ Moreover, the ordered quadruples $(a,b,c,d)$ and the ordered quadruples $(a',b,c',d)$ have one-to-one correspondence.

We rewrite the given equation as $(9-a)+b+(9-c)+d=9,$ or $$a'+b+c'+d=9.$$ By the stars and bars argument, there are $\binom{9+4-1}{4-1}=\boxed{\textbf{(D) } 220}$ ordered quadruples $(a',b,c',d).$

~pieater314159 ~MRENTHUSIASM

## Solution 2 (Casework)

Suppose that $P(x)=ax^3+bx^2+cx+d.$ This problem is equivalent to counting the ordered quadruples $(a,b,c,d),$ where all of $a,b,c,$ and $d$ are integers from $0$ through $9$ such that $P(-1)=-a+b-c+d=-9,$ which rearranges to $$b+d+9=a+c.$$ Note that $b+d+9$ is an integer from $9$ through $27,$ and $a+c$ is an integer from $0$ through $18.$ Therefore, both of $b+d+9$ and $a+c$ are integers from $9$ through $18.$ We construct the following table: $$\begin{array}{c|c|c|c||c} & & & & \\ [-2.5ex] \boldsymbol{b+d} & \boldsymbol{\#}\textbf{ of Ordered Pairs }\boldsymbol{(b,d)} & \boldsymbol{a+c} & \boldsymbol{\#}\textbf{ of Ordered Pairs }\boldsymbol{(a,c)} & \boldsymbol{\#}\textbf{ of Ordered Quadruples }\boldsymbol{(a,b,c,d)} \\ [0.5ex] \hline & & & & \\ [-2ex] 0 & 1 & 9 & 10 & 1\cdot10=10 \\ 1 & 2 & 10 & 9 & \phantom{0}2\cdot9=18 \\ 2 & 3 & 11 & 8 & \phantom{0}3\cdot8=24 \\ 3 & 4 & 12 & 7 & \phantom{0}4\cdot7=28 \\ 4 & 5 & 13 & 6 & \phantom{0}5\cdot6=30 \\ 5 & 6 & 14 & 5 & \phantom{0}6\cdot5=30 \\ 6 & 7 & 15 & 4 & \phantom{0}7\cdot4=28 \\ 7 & 8 & 16 & 3 & \phantom{0}8\cdot3=24 \\ 8 & 9 & 17 & 2 & \phantom{0}9\cdot2=18 \\ 9 & 10 & 18 & 1 & 10\cdot1=10 \end{array}$$ We sum up the counts in the last column to get the answer $2\cdot(10+18+24+28+30)=\boxed{\textbf{(D) } 220}.$

~BJHHar ~MRENTHUSIASM

## See Also

 2018 AMC 12B (Problems • Answer Key • Resources) Preceded byProblem 21 Followed byProblem 23 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.