Difference between revisions of "2018 AMC 8 Problems"
m (→Problem 5) |
MRENTHUSIASM (talk | contribs) (Tag: Undo) |
||
(71 intermediate revisions by 41 users not shown) | |||
Line 12: | Line 12: | ||
[[2018 AMC 8 Problems/Problem 2|Solution]] | [[2018 AMC 8 Problems/Problem 2|Solution]] | ||
+ | |||
==Problem 3== | ==Problem 3== | ||
Students Arn, Bob, Cyd, Dan, Eve, and Fon are arranged in that order in a circle. They start counting: Arn first, then Bob, and so forth. When the number contains a 7 as a digit (such as 47) or is a multiple of 7 that person leaves the circle and the counting continues. Who is the last one present in the circle? | Students Arn, Bob, Cyd, Dan, Eve, and Fon are arranged in that order in a circle. They start counting: Arn first, then Bob, and so forth. When the number contains a 7 as a digit (such as 47) or is a multiple of 7 that person leaves the circle and the counting continues. Who is the last one present in the circle? | ||
Line 18: | Line 19: | ||
[[2018 AMC 8 Problems/Problem 3|Solution]] | [[2018 AMC 8 Problems/Problem 3|Solution]] | ||
+ | |||
==Problem 4== | ==Problem 4== | ||
The twelve-sided figure shown has been drawn on <math>1 \text{ cm}\times 1 \text{ cm}</math> graph paper. What is the area of the figure in <math>\text{cm}^2</math>? | The twelve-sided figure shown has been drawn on <math>1 \text{ cm}\times 1 \text{ cm}</math> graph paper. What is the area of the figure in <math>\text{cm}^2</math>? | ||
Line 36: | Line 38: | ||
What is the value of <math>1+3+5+\cdots+2017+2019-2-4-6-\cdots-2016-2018</math>? | What is the value of <math>1+3+5+\cdots+2017+2019-2-4-6-\cdots-2016-2018</math>? | ||
− | <math>\textbf{(A) }-1010\qquad\textbf{(B) }-1009\qquad\textbf{(C) }1008\qquad\textbf{(D) }1009\qquad \textbf{(E) } | + | <math>\textbf{(A) }-1010\qquad\textbf{(B) }-1009\qquad\textbf{(C) }1008\qquad\textbf{(D) }1009\qquad \textbf{(E) }1010</math> |
[[2018 AMC 8 Problems/Problem 5|Solution]] | [[2018 AMC 8 Problems/Problem 5|Solution]] | ||
Line 46: | Line 48: | ||
[[2018 AMC 8 Problems/Problem 6|Solution]] | [[2018 AMC 8 Problems/Problem 6|Solution]] | ||
+ | |||
==Problem 7== | ==Problem 7== | ||
The <math>5</math>-digit number <math>\underline{2}</math> <math>\underline{0}</math> <math>\underline{1}</math> <math>\underline{8}</math> <math>\underline{U}</math> is divisible by <math>9</math>. What is the remainder when this number is divided by <math>8</math>? | The <math>5</math>-digit number <math>\underline{2}</math> <math>\underline{0}</math> <math>\underline{1}</math> <math>\underline{8}</math> <math>\underline{U}</math> is divisible by <math>9</math>. What is the remainder when this number is divided by <math>8</math>? | ||
Line 86: | Line 89: | ||
[[2018 AMC 8 Problems/Problem 8|Solution]] | [[2018 AMC 8 Problems/Problem 8|Solution]] | ||
+ | |||
==Problem 9== | ==Problem 9== | ||
− | + | Jenica is tiling the floor of her 12 foot by 16 foot living room. She plans to place one-foot by one-foot square tiles to form a border along the edges of the room and to fill in the rest of the floor with two-foot by two-foot square tiles. How many tiles will she use? | |
<math>\textbf{(A) }48\qquad\textbf{(B) }87\qquad\textbf{(C) }91\qquad\textbf{(D) }96\qquad \textbf{(E) }120</math> | <math>\textbf{(A) }48\qquad\textbf{(B) }87\qquad\textbf{(C) }91\qquad\textbf{(D) }96\qquad \textbf{(E) }120</math> | ||
Line 115: | Line 119: | ||
==Problem 12== | ==Problem 12== | ||
− | The clock in | + | The clock in Sri's car, which is not accurate, gains time at a constant rate. One day as he begins shopping he notes that his car clock and his watch (which is accurate) both say 12:00 noon. When he is done shopping, his watch says 12:30 and his car clock says 12:35. Later that day, Sri loses his watch. He looks at his car clock and it says 7:00. What is the actual time? |
− | |||
<math>\textbf{(A) }5:50\qquad\textbf{(B) }6:00\qquad\textbf{(C) }6:30\qquad\textbf{(D) }6:55\qquad \textbf{(E) }8:10</math> | <math>\textbf{(A) }5:50\qquad\textbf{(B) }6:00\qquad\textbf{(C) }6:30\qquad\textbf{(D) }6:55\qquad \textbf{(E) }8:10</math> | ||
Line 131: | Line 134: | ||
Let <math>N</math> be the greatest five-digit number whose digits have a product of <math>120</math>. What is the sum of the digits of <math>N</math>? | Let <math>N</math> be the greatest five-digit number whose digits have a product of <math>120</math>. What is the sum of the digits of <math>N</math>? | ||
− | <math>\textbf{(A) }15\qquad\textbf{(B) }16\qquad\textbf{(C) } | + | <math>\textbf{(A) }15\qquad\textbf{(B) }16\qquad\textbf{(C)17} |
+ | \qquad\textbf{(D)}18\qquad\textbf{(E)}20</math> | ||
[[2018 AMC 8 Problems/Problem 14|Solution]] | [[2018 AMC 8 Problems/Problem 14|Solution]] | ||
+ | |||
==Problem 15== | ==Problem 15== | ||
In the diagram below, a diameter of each of the two smaller circles is a radius of the larger circle. If the two smaller circles have a combined area of <math>1</math> square unit, then what is the area of the shaded region, in square units? | In the diagram below, a diameter of each of the two smaller circles is a radius of the larger circle. If the two smaller circles have a combined area of <math>1</math> square unit, then what is the area of the shaded region, in square units? | ||
Line 165: | Line 170: | ||
[[2018 AMC 8 Problems/Problem 18|Solution]] | [[2018 AMC 8 Problems/Problem 18|Solution]] | ||
+ | |||
==Problem 19== | ==Problem 19== | ||
In a sign pyramid a cell gets a "+" if the two cells below it have the same sign, and it gets a "-" if the two cells below it have different signs. The diagram below illustrates a sign pyramid with four levels. How many possible ways are there to fill the four cells in the bottom row to produce a "+" at the top of the pyramid? | In a sign pyramid a cell gets a "+" if the two cells below it have the same sign, and it gets a "-" if the two cells below it have different signs. The diagram below illustrates a sign pyramid with four levels. How many possible ways are there to fill the four cells in the bottom row to produce a "+" at the top of the pyramid? | ||
Line 211: | Line 217: | ||
[[2018 AMC 8 Problems/Problem 21|Solution]] | [[2018 AMC 8 Problems/Problem 21|Solution]] | ||
+ | |||
==Problem 22== | ==Problem 22== | ||
Point <math>E</math> is the midpoint of side <math>\overline{CD}</math> in square <math>ABCD,</math> and <math>\overline{BE}</math> meets diagonal <math>\overline{AC}</math> at <math>F.</math> The area of quadrilateral <math>AFED</math> is <math>45.</math> What is the area of <math>ABCD?</math> | Point <math>E</math> is the midpoint of side <math>\overline{CD}</math> in square <math>ABCD,</math> and <math>\overline{BE}</math> meets diagonal <math>\overline{AC}</math> at <math>F.</math> The area of quadrilateral <math>AFED</math> is <math>45.</math> What is the area of <math>ABCD?</math> | ||
Line 289: | Line 296: | ||
[[2018 AMC 8 Problems/Problem 25|Solution]] | [[2018 AMC 8 Problems/Problem 25|Solution]] | ||
− | {{ | + | ==See Also== |
− | + | {{AMC8 box|year=2018|before=[[2017 AMC 8 Problems|2017 AMC 8]]|after=[[2019 AMC 8 Problems|2019 AMC 8]]}} | |
− | + | * [[AMC 8]] | |
− | + | * [[AMC 8 Problems and Solutions]] | |
+ | * [[Mathematics competition resources|Mathematics Competition Resources]] |
Latest revision as of 00:13, 4 April 2022
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 See Also
Problem 1
An amusement park has a collection of scale models, with ratio , of buildings and other sights from around the country. The height of the United States Capitol is 289 feet. What is the height in feet of its replica to the nearest whole number?
Problem 2
What is the value of the product
Problem 3
Students Arn, Bob, Cyd, Dan, Eve, and Fon are arranged in that order in a circle. They start counting: Arn first, then Bob, and so forth. When the number contains a 7 as a digit (such as 47) or is a multiple of 7 that person leaves the circle and the counting continues. Who is the last one present in the circle?
Problem 4
The twelve-sided figure shown has been drawn on graph paper. What is the area of the figure in ?
Problem 5
What is the value of ?
Problem 6
On a trip to the beach, Anh traveled 50 miles on the highway and 10 miles on a coastal access road. He drove three times as fast on the highway as on the coastal road. If Anh spent 30 minutes driving on the coastal road, how many minutes did his entire trip take?
Problem 7
The -digit number is divisible by . What is the remainder when this number is divided by ?
Problem 8
Mr. Garcia asked the members of his health class how many days last week they exercised for at least 30 minutes. The results are summarized in the following bar graph, where the heights of the bars represent the number of students.
What was the mean number of days of exercise last week, rounded to the nearest hundredth, reported by the students in Mr. Garcia's class?
Problem 9
Jenica is tiling the floor of her 12 foot by 16 foot living room. She plans to place one-foot by one-foot square tiles to form a border along the edges of the room and to fill in the rest of the floor with two-foot by two-foot square tiles. How many tiles will she use?
Problem 10
The of a set of non-zero numbers is the reciprocal of the average of the reciprocals of the numbers. What is the harmonic mean of 1, 2, and 4?
Problem 11
Abby, Bridget, and four of their classmates will be seated in two rows of three for a group picture, as shown.
If the seating positions are assigned randomly, what is the probability that Abby and Bridget are adjacent to each other in the same row or the same column?
Problem 12
The clock in Sri's car, which is not accurate, gains time at a constant rate. One day as he begins shopping he notes that his car clock and his watch (which is accurate) both say 12:00 noon. When he is done shopping, his watch says 12:30 and his car clock says 12:35. Later that day, Sri loses his watch. He looks at his car clock and it says 7:00. What is the actual time?
Problem 13
Laila took five math tests, each worth a maximum of 100 points. Laila's score on each test was an integer between 0 and 100, inclusive. Laila received the same score on the first four tests, and she received a higher score on the last test. Her average score on the five tests was 82. How many values are possible for Laila's score on the last test?
Problem 14
Let be the greatest five-digit number whose digits have a product of . What is the sum of the digits of ?
Problem 15
In the diagram below, a diameter of each of the two smaller circles is a radius of the larger circle. If the two smaller circles have a combined area of square unit, then what is the area of the shaded region, in square units?
Problem 16
Professor Chang has nine different language books lined up on a bookshelf: two Arabic, three German, and four Spanish. How many ways are there to arrange the nine books on the shelf keeping the Arabic books together and keeping the Spanish books together?
Problem 17
Bella begins to walk from her house toward her friend Ella's house. At the same time, Ella begins to ride her bicycle toward Bella's house. They each maintain a constant speed, and Ella rides 5 times as fast as Bella walks. The distance between their houses is miles, which is feet, and Bella covers feet with each step. How many steps will Bella take by the time she meets Ella?
Problem 18
How many positive factors does have?
Problem 19
In a sign pyramid a cell gets a "+" if the two cells below it have the same sign, and it gets a "-" if the two cells below it have different signs. The diagram below illustrates a sign pyramid with four levels. How many possible ways are there to fill the four cells in the bottom row to produce a "+" at the top of the pyramid?
Problem 20
In a point is on with and Point is on so that and point is on so that What is the ratio of the area of to the area of
Problem 21
How many positive three-digit integers have a remainder of 2 when divided by 6, a remainder of 5 when divided by 9, and a remainder of 7 when divided by 11?
Problem 22
Point is the midpoint of side in square and meets diagonal at The area of quadrilateral is What is the area of
Problem 23
From a regular octagon, a triangle is formed by connecting three randomly chosen vertices of the octagon. What is the probability that at least one of the sides of the triangle is also a side of the octagon?
Problem 24
In the cube with opposite vertices and and are the midpoints of edges and respectively. Let be the ratio of the area of the cross-section to the area of one of the faces of the cube. What is
Problem 25
How many perfect cubes lie between and , inclusive?
See Also
2018 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by 2017 AMC 8 |
Followed by 2019 AMC 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |