Difference between revisions of "2018 AMC 8 Problems/Problem 11"

(Solution 3)
(Solution 3)
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
==Problem 11==
 
==Problem 11==
Abby, Bridget, and four of their classmates will be seated in two rows of three for a group picture, as shown.
+
Abby, Bridget, and four of their classmates will be seated in two rows of three for a group picture, as shown.  
 
<cmath>\begin{eqnarray*}
 
<cmath>\begin{eqnarray*}
 
\text{X}&\quad\text{X}\quad&\text{X} \\
 
\text{X}&\quad\text{X}\quad&\text{X} \\

Revision as of 00:17, 21 November 2019

Problem 11

Abby, Bridget, and four of their classmates will be seated in two rows of three for a group picture, as shown. \begin{eqnarray*} \text{X}&\quad\text{X}\quad&\text{X} \\ \text{X}&\quad\text{X}\quad&\text{X}  \end{eqnarray*} If the seating positions are assigned randomly, what is the probability that Abby and Bridget are adjacent to each other in the same row or the same column?

$\textbf{(A) } \frac{1}{3} \qquad \textbf{(B) } \frac{2}{5} \qquad \textbf{(C) } \frac{7}{15} \qquad \textbf{(D) } \frac{1}{2} \qquad \textbf{(E) } \frac{2}{3}$

Solution 1

There are a total of $6!$ ways to arrange the kids.

Abby and Bridget can sit in 3 ways if they are adjacent in the same column: \begin{eqnarray*} \text{A}&\quad\text{X}\quad&\text{X} \\ \text{B}&\quad\text{X}\quad&\text{X}  \end{eqnarray*}


\begin{eqnarray*} \text{X}&\quad\text{A}\quad&\text{X} \\ \text{X}&\quad\text{B}\quad&\text{X}  \end{eqnarray*}


\begin{eqnarray*} \text{X}&\quad\text{X}\quad&\text{A} \\ \text{X}&\quad\text{X}\quad&\text{B}  \end{eqnarray*}


For each of these seat positions, Abby and Bridget can switch seats, and the other 4 people can be arranged in $4!$ ways which results in a total of $3 \times 2 \times 4!$ ways to arrange them.


By the same logic, there are 4 ways for Abby and Bridget to placed if they are adjacent in the same row, they can swap seats, and the other $4$ people can be arranged in $4!$ ways, for a total of $4 \times 2 \times 4!$ ways to arrange them.


We sum the 2 possibilities up to get $\frac{(3\cdot2)\cdot4!+(4\cdot2)\cdot4!}{6!} = \frac{14\cdot4!}{6!}=\boxed{\frac{7}{15}}$ or $\textbf{(C)}$.

A more simplistic way to do this is to consider the probability Bridget is adjacent for each of the 6 possible locations for Abby. If Abby is in any of the the corners, the chance that Bridget is adjacent is 2/5 because 2 of 5 possible locations for Bridget is an adjacent location. If Abby is in either of the two middle locations, the chance that Bridget is adjacent is 3/5 because 3 of 5 locations for Bridget is an adjacent location. So the total probability they are adjacent is (4/6)*(2/5) + (2/6)*(3/5) = 7/15.

Solution 2

We can ignore about the 4 other classmates because they aren't relevant. We can treat Abby and Bridget as a pair, so there are ${6 \choose 2}=15$ total ways to seat them. If they sit in the same row, there are $2\cdot2=4$ ways to seat them. If they sit in the same column, there are $3$ ways to seat them. Thus our answer is $\frac{4+3}{15} = \boxed{\textbf{(C) }\frac 7{15}}$

Solution 3

The total number of ways is $n(S) = _{6}C_{2} = 15$ , if we treat Abby and Bridget as a pair and distinguishable and forget the others. The total number of ways they are adjacent = 4 (for the rows) + 3 (for the columns) Therefore, P(Abby and Bridget sitting adjacent) is $\boxed{\frac{7}{15}{} (C)}$

See also

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png