Difference between revisions of "2018 AMC 8 Problems/Problem 20"

(Solution)
m (Solution)
Line 19: Line 19:
 
==Solution==
 
==Solution==
  
The <math>\triangle ADE</math>'s area is <math>\frac{1}{9}</math> of <math>\triangle ABC</math> (by similar triangles). We can also get that <math>\triangle BEF</math> is <math>\frac{4}{9}</math> of <math>\triangle ABC</math> (also by similar triangles). Using this information, we can get that the area of region <math>ACFE</math> is <math>\frac{5}{9}</math> of <math>\triangle ABC</math> (because the area of <math>\triangle BEF</math> is <math>\frac{4}{9}</math> of the area of <math>\triangle ABC</math>). Then, because <math>\triangle ADE</math> is <math>\frac{1}{9}</math> of <math>\triangle ABC</math>, it follows that the area of region <math>CDEF</math> is <math>\frac{4}{9} </math>\triangle ABC<math>. Thus, the answer would be </math>\boxed{\textbf{(A) }$
+
The <math>\triangle ADE</math>'s area is <math>\frac{1}{9}</math> of <math>\triangle ABC</math> (by similar triangles). We can also get that <math>\triangle BEF</math> is <math>\frac{4}{9}</math> of <math>\triangle ABC</math> (also by similar triangles). Using this information, we can get that the area of region <math>ACFE</math> is <math>\frac{5}{9}</math> of <math>\triangle ABC</math> (because the area of <math>\triangle BEF</math> is <math>\frac{4}{9}</math> of the area of <math>\triangle ABC</math>). Then, because <math>\triangle ADE</math> is <math>\frac{1}{9}</math> of <math>\triangle ABC</math>, it follows that the area of region <math>CDEF</math> is <math>\frac{4}{9}</math><math>\triangle ABC</math>. Thus, the answer would be <math>\boxed{\textbf{(A)}</math>
  
 
==See Also==
 
==See Also==

Revision as of 01:22, 3 January 2019

Problem 20

In $\triangle ABC,$ a point $E$ is on $\overline{AB}$ with $AE=1$ and $EB=2.$ Point $D$ is on $\overline{AC}$ so that $\overline{DE} \parallel \overline{BC}$ and point $F$ is on $\overline{BC}$ so that $\overline{EF} \parallel \overline{AC}.$ What is the ratio of the area of $CDEF$ to the area of $\triangle ABC?$

[asy] size(7cm); pair A,B,C,DD,EE,FF; A = (0,0); B = (3,0); C = (0.5,2.5); EE = (1,0); DD = intersectionpoint(A--C,EE--EE+(C-B)); FF = intersectionpoint(B--C,EE--EE+(C-A)); draw(A--B--C--A--DD--EE--FF,black+1bp); label("$A$",A,S); label("$B$",B,S); label("$C$",C,N); label("$D$",DD,W); label("$E$",EE,S); label("$F$",FF,NE); label("$1$",(A+EE)/2,S); label("$2$",(EE+B)/2,S); [/asy]

$\textbf{(A) } \frac{4}{9} \qquad \textbf{(B) } \frac{1}{2} \qquad \textbf{(C) } \frac{5}{9} \qquad \textbf{(D) } \frac{3}{5} \qquad \textbf{(E) } \frac{2}{3}$

Solution

The $\triangle ADE$'s area is $\frac{1}{9}$ of $\triangle ABC$ (by similar triangles). We can also get that $\triangle BEF$ is $\frac{4}{9}$ of $\triangle ABC$ (also by similar triangles). Using this information, we can get that the area of region $ACFE$ is $\frac{5}{9}$ of $\triangle ABC$ (because the area of $\triangle BEF$ is $\frac{4}{9}$ of the area of $\triangle ABC$). Then, because $\triangle ADE$ is $\frac{1}{9}$ of $\triangle ABC$, it follows that the area of region $CDEF$ is $\frac{4}{9}$$\triangle ABC$. Thus, the answer would be $\boxed{\textbf{(A)}$ (Error compiling LaTeX. Unknown error_msg)

See Also

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png