Difference between revisions of "2018 AMC 8 Problems/Problem 21"

(Solution 2)
(Video Solutions)
 
(9 intermediate revisions by 4 users not shown)
Line 6: Line 6:
 
==Solution 1==
 
==Solution 1==
  
Looking at the values, we notice that <math>11-7=4</math>, <math>9-5=4</math> and <math>6-2=4</math>. This means we are looking for a value that is four less than a multiple of <math>11</math>, <math>9</math>, and <math>6</math>. The least common multiple of these numbers is <math>11\cdot3^{2}\cdot2=198</math>, so the numbers that fulfill this can be written as <math>198k-4</math>, where <math>k</math> is a positive integer.  This value is only a three digit≤ integer when <math>k</math> is <math>1, 2, 3, 4</math> or <math>5</math>, which gives <math>194, 392, 590, 788,</math> and <math>986</math> respectively. Thus we have <math>5</math> values, so our answer is <math>\boxed{\textbf{(E) }5}</math>
+
Looking at the values, we notice that <math>11-7=4</math>, <math>9-5=4</math> and <math>6-2=4</math>. This means we are looking for a value that is four less than a multiple of <math>11</math>, <math>9</math>, and <math>6</math>. The least common multiple of these numbers is <math>11\cdot3^{2}\cdot2=198</math>, so the numbers that fulfill this can be written as <math>198k-4</math>, where <math>k</math> is a positive integer.  This value is only a three digit integer when <math>k</math> is <math>1, 2, 3, 4</math> or <math>5</math>, which gives <math>194, 392, 590, 788,</math> and <math>986</math> respectively. Thus we have <math>5</math> values, so our answer is <math>\boxed{\textbf{(E) }5}</math>
  
 
==Solution 2==
 
==Solution 2==
Let us create the equations: <math>6x+2 = 9y+5 = 11z+7</math>, and we know <math>100 \leq 11z+7 <1000</math>, it gives us <math>9 \leq z \leq 90</math>, which is the range of the value of z. Because of <math>6x+2=11z+7</math>, then <math>6x=11z+5=6z+5(z+1)</math>, so (z+1) must be mutiples of 6. Because of <math>9y+5=11z+7</math>, then <math>9y=11z+2=9z+2(z+1)</math>, so (z+1) must also be mutiples of 9. Hence, the value of (z+1) must be common multiples of <math>6</math> and <math>9</math>, which means multiples of <math>18(LCM \text{ of }\ 6, 9)</math>. So let's say <math>z+1 = 18p</math>, then <math>9 \leq z = 18p-1 \leq 90</math>,  so <math>1 \leq p \leq 91/18\ or \ 1 \leq p \leq 5</math>. Thus the answer is <math>\boxed{\textbf{(E) }5}</math> ~LarryFlora
+
Let us create the equations: <math>6x+2 = 9y+5 = 11z+7</math>, and we know <math>100 \leq 11z+7 <1000</math>, it gives us <math>9 \leq z \leq 90</math>, which is the range of the value of z. Because of <math>6x+2=11z+7</math>, then <math>6x=11z+5=6z+5(z+1)</math>, so <math>(z+1)</math> must be a mutiple of 6. Because of <math>9y+5=11z+7</math>, then <math>9y=11z+2=9z+2(z+1)</math>, so <math>(z+1)</math> must also be a mutiple of <math>9</math>. Hence, the value of <math>(z+1)</math> must be a common multiple of <math>6</math> and <math>9</math>, which means multiples of <math>18(LCM \text{ of }\ 6, 9)</math>. So let's say <math>z+1 = 18p</math>, then <math>9 \leq z = 18p-1 \leq 90</math>,  so <math>1 \leq p \leq 91/18\ or \ 1 \leq p \leq 5</math>. Thus the answer is <math>\boxed{\textbf{(E) }5}</math> ~LarryFlora
  
==Video Solution==
+
==Solution 3==
 +
By the [[Chinese Remainder Theorem]], we have that all solutions are in the form <math>x=198k+194</math> where <math>k\in \mathbb{Z}.</math> Counting the number of values, we get <math>\boxed{\textbf{(E) }5}.</math>
 +
 
 +
~mathboy282
 +
 
 +
==Video Solutions==
 
https://youtu.be/CPQpkpnEuIc - Happytwin
 
https://youtu.be/CPQpkpnEuIc - Happytwin
  
 
https://youtu.be/PTwMDbsz2xI
 
https://youtu.be/PTwMDbsz2xI
  
https://youtu.be/7an5wU9Q5hk?t=939
+
https://youtu.be/7an5wU9Q5hk?t=939 - pi_is_3.14
 +
 
 +
https://youtu.be/hoCdk8AC-0c
 +
 
 +
~savannahsolver
 +
 
 +
https://www.youtube.com/watch?v=PjYwbGm_2aM
  
 
==See Also==
 
==See Also==

Latest revision as of 17:34, 23 April 2022

Problem

How many positive three-digit integers have a remainder of 2 when divided by 6, a remainder of 5 when divided by 9, and a remainder of 7 when divided by 11?

$\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad \textbf{(E) }5$

Solution 1

Looking at the values, we notice that $11-7=4$, $9-5=4$ and $6-2=4$. This means we are looking for a value that is four less than a multiple of $11$, $9$, and $6$. The least common multiple of these numbers is $11\cdot3^{2}\cdot2=198$, so the numbers that fulfill this can be written as $198k-4$, where $k$ is a positive integer. This value is only a three digit integer when $k$ is $1, 2, 3, 4$ or $5$, which gives $194, 392, 590, 788,$ and $986$ respectively. Thus we have $5$ values, so our answer is $\boxed{\textbf{(E) }5}$

Solution 2

Let us create the equations: $6x+2 = 9y+5 = 11z+7$, and we know $100 \leq 11z+7 <1000$, it gives us $9 \leq z \leq 90$, which is the range of the value of z. Because of $6x+2=11z+7$, then $6x=11z+5=6z+5(z+1)$, so $(z+1)$ must be a mutiple of 6. Because of $9y+5=11z+7$, then $9y=11z+2=9z+2(z+1)$, so $(z+1)$ must also be a mutiple of $9$. Hence, the value of $(z+1)$ must be a common multiple of $6$ and $9$, which means multiples of $18(LCM \text{ of }\ 6, 9)$. So let's say $z+1 = 18p$, then $9 \leq z = 18p-1 \leq 90$, so $1 \leq p \leq 91/18\ or \ 1 \leq p \leq 5$. Thus the answer is $\boxed{\textbf{(E) }5}$ ~LarryFlora

Solution 3

By the Chinese Remainder Theorem, we have that all solutions are in the form $x=198k+194$ where $k\in \mathbb{Z}.$ Counting the number of values, we get $\boxed{\textbf{(E) }5}.$

~mathboy282

Video Solutions

https://youtu.be/CPQpkpnEuIc - Happytwin

https://youtu.be/PTwMDbsz2xI

https://youtu.be/7an5wU9Q5hk?t=939 - pi_is_3.14

https://youtu.be/hoCdk8AC-0c

~savannahsolver

https://www.youtube.com/watch?v=PjYwbGm_2aM

See Also

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS