Difference between revisions of "2018 AMC 8 Problems/Problem 22"

(Problem 22)
(Solution 1)
(25 intermediate revisions by 12 users not shown)
Line 15: Line 15:
  
 
<math>\textbf{(A) } 100 \qquad \textbf{(B) } 108 \qquad \textbf{(C) } 120 \qquad \textbf{(D) } 135 \qquad \textbf{(E) } 144</math>
 
<math>\textbf{(A) } 100 \qquad \textbf{(B) } 108 \qquad \textbf{(C) } 120 \qquad \textbf{(D) } 135 \qquad \textbf{(E) } 144</math>
 +
 +
==Solution 1==
 +
Let the area of <math>\triangle CEF</math> be <math>x</math>. Thus, the area of triangle <math>\triangle ACD</math> is <math>45+x</math> and the area of the square is <math>2(45+x) = 90+2x</math>.
 +
 +
By AA similarity, <math>\triangle CEF \sim \triangle ABF</math> with a 1:2 ratio, so the area of triangle <math>\triangle ABF</math> is <math>4x</math>. Now consider trapezoid <math>ABED</math>. Its area is <math>45+4x</math>, which is three-fourths the area of the square. We set up an equation in <math>x</math>:
 +
 +
<cmath> 45+4x = \frac{3}{4}\left(90+2x\right) </cmath>
 +
Solving, we get <math>x = 9</math>. The area of square <math>ABCD</math> is <math>90+2x = 90 + 2 \cdot 9 = \boxed{\textbf{(B)} 108}</math>.
 +
 +
==Solution 2==
 +
We can use analytic geometry for this problem.
 +
 +
Let us start by giving <math>D</math> the coordinate <math>(0,0)</math>, <math>A</math> the coordinate <math>(0,1)</math>, and so forth. <math>\overline{AC}</math> and <math>\overline{EB}</math> can be represented by the equations <math>y=-x+1</math> and <math>y=2x-1</math>, respectively. Solving for their intersection gives point <math>F</math> coordinates <math>\left(\frac{2}{3},\frac{1}{3}\right)</math>.
 +
 +
Now, <math>\triangle</math><math>EFC</math>’s area is simply <math>\frac{\frac{1}{2}\cdot\frac{1}{3}}{2}</math> or <math>\frac{1}{12}</math>. This means that pentagon <math>ABCEF</math>’s area is <math>\frac{1}{2}+\frac{1}{12}=\frac{7}{12}</math> of the entire square, and it follows that quadrilateral <math>AFED</math>’s area is <math>\frac{5}{12}</math> of the square.
 +
 +
The area of the square is then <math>\frac{45}{\frac{5}{12}}=9\cdot12=\boxed{\textbf{(B)}108}</math>.
 +
 +
=See Also=
 
{{AMC8 box|year=2018|num-b=21|num-a=23}}
 
{{AMC8 box|year=2018|num-b=21|num-a=23}}
==Solution==
+
Set s to be the bottom left triangle.
Let the sidelength of the square be x. Then <math>\overline{EC}=\frac{x}{2}</math>. Notice that <math>\triangle{ABF}</math> and <math>\triangle{CEF}</math> are similar with ratio <math>2:1</math>. Than the altitude from <math>F</math> to<math>\overline{AB}</math> has length of <math>\frac{2x}{3}</math>. Then <math>[ABF]=\frac{2x^2}{6}=\frac{x^2}{3}</math>. Also <math>[BEC]=\frac{\frac{x}{2}\cdot x}{2}=\frac{x^2}{4}</math>. That means <math>[AFED]=x^2-\frac{x^2}{3}-\frac{x^2}{4}=\frac{5}{12}x</math>. So <math>[ABCD]=45\cdot\frac{12}{5}=108</math> or B
 
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 11:38, 12 November 2019

Problem 22

Point $E$ is the midpoint of side $\overline{CD}$ in square $ABCD,$ and $\overline{BE}$ meets diagonal $\overline{AC}$ at $F.$ The area of quadrilateral $AFED$ is $45.$ What is the area of $ABCD?$

[asy] size(5cm); draw((0,0)--(6,0)--(6,6)--(0,6)--cycle); draw((0,6)--(6,0)); draw((3,0)--(6,6)); label("$A$",(0,6),NW); label("$B$",(6,6),NE); label("$C$",(6,0),SE); label("$D$",(0,0),SW); label("$E$",(3,0),S); label("$F$",(4,2),E); [/asy]

$\textbf{(A) } 100 \qquad \textbf{(B) } 108 \qquad \textbf{(C) } 120 \qquad \textbf{(D) } 135 \qquad \textbf{(E) } 144$

Solution 1

Let the area of $\triangle CEF$ be $x$. Thus, the area of triangle $\triangle ACD$ is $45+x$ and the area of the square is $2(45+x) = 90+2x$.

By AA similarity, $\triangle CEF \sim \triangle ABF$ with a 1:2 ratio, so the area of triangle $\triangle ABF$ is $4x$. Now consider trapezoid $ABED$. Its area is $45+4x$, which is three-fourths the area of the square. We set up an equation in $x$:

\[45+4x = \frac{3}{4}\left(90+2x\right)\] Solving, we get $x = 9$. The area of square $ABCD$ is $90+2x = 90 + 2 \cdot 9 = \boxed{\textbf{(B)} 108}$.

Solution 2

We can use analytic geometry for this problem.

Let us start by giving $D$ the coordinate $(0,0)$, $A$ the coordinate $(0,1)$, and so forth. $\overline{AC}$ and $\overline{EB}$ can be represented by the equations $y=-x+1$ and $y=2x-1$, respectively. Solving for their intersection gives point $F$ coordinates $\left(\frac{2}{3},\frac{1}{3}\right)$.

Now, $\triangle$$EFC$’s area is simply $\frac{\frac{1}{2}\cdot\frac{1}{3}}{2}$ or $\frac{1}{12}$. This means that pentagon $ABCEF$’s area is $\frac{1}{2}+\frac{1}{12}=\frac{7}{12}$ of the entire square, and it follows that quadrilateral $AFED$’s area is $\frac{5}{12}$ of the square.

The area of the square is then $\frac{45}{\frac{5}{12}}=9\cdot12=\boxed{\textbf{(B)}108}$.

See Also

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

Set s to be the bottom left triangle. The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png