Difference between revisions of "2018 AMC 8 Problems/Problem 22"

(Solution 1)
(Solution 3)
(21 intermediate revisions by 12 users not shown)
Line 19: Line 19:
 
Let the area of <math>\triangle CEF</math> be <math>x</math>. Thus, the area of triangle <math>\triangle ACD</math> is <math>45+x</math> and the area of the square is <math>2(45+x) = 90+2x</math>.
 
Let the area of <math>\triangle CEF</math> be <math>x</math>. Thus, the area of triangle <math>\triangle ACD</math> is <math>45+x</math> and the area of the square is <math>2(45+x) = 90+2x</math>.
  
By AAA similarity, <math>\triangle CEF \sim \triangle ABF</math> with a 1:2 ratio, so the area of triangle <math>\triangle ABF</math> is <math>4x</math>. Now consider trapezoid <math>ABED</math>. Its area is <math>45+4x</math>, which is three-fourths the area of the square. We set up an equation in <math>x</math>:
+
By AA similarity, <math>\triangle CEF \sim \triangle ABF</math> with a 1:2 ratio, so the area of triangle <math>\triangle ABF</math> is <math>4x</math>. Now consider trapezoid <math>ABED</math>. Its area is <math>45+4x</math>, which is three-fourths the area of the square. We set up an equation in <math>x</math>:
  
 
<cmath> 45+4x = \frac{3}{4}\left(90+2x\right) </cmath>
 
<cmath> 45+4x = \frac{3}{4}\left(90+2x\right) </cmath>
 
Solving, we get <math>x = 9</math>. The area of square <math>ABCD</math> is <math>90+2x = 90 + 2 \cdot 9 = \boxed{\textbf{(B)} 108}</math>.
 
Solving, we get <math>x = 9</math>. The area of square <math>ABCD</math> is <math>90+2x = 90 + 2 \cdot 9 = \boxed{\textbf{(B)} 108}</math>.
 
==Solution 1.5==
 
We notice some similar triangles. This is good, but you want to know the ratios in order to begin using them. Say that 45 is the area of half the triangle subtracted by <math>a</math>, so then the area of the whole square would be <math>90+2a</math>.
 
  
 
==Solution 2==
 
==Solution 2==
Line 35: Line 32:
  
 
The area of the square is then <math>\frac{45}{\frac{5}{12}}=9\cdot12=\boxed{\textbf{(B)}108}</math>.
 
The area of the square is then <math>\frac{45}{\frac{5}{12}}=9\cdot12=\boxed{\textbf{(B)}108}</math>.
 +
==Solution 3==
 +
Note that triangle <math>ABC</math> has half the area of the square and triangle <math>FEC</math> has <math>\dfrac1{12}</math>th. Thus the area of the quadrilateral is <math>1-1/2-1/12=5/12</math>th the area of the square. The area of the square is then <math>45\cdot\dfrac{12}{5}=\boxed{\textbf{(B.)}108}</math>.
  
==See Also==
+
==Video Solution==
 +
https://www.youtube.com/watch?v=c4_-h7DsZFg - Happytwin
 +
 
 +
=See Also=
 
{{AMC8 box|year=2018|num-b=21|num-a=23}}
 
{{AMC8 box|year=2018|num-b=21|num-a=23}}
 
+
Set s to be the bottom left triangle.
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 12:07, 31 May 2020

Problem 22

Point $E$ is the midpoint of side $\overline{CD}$ in square $ABCD,$ and $\overline{BE}$ meets diagonal $\overline{AC}$ at $F.$ The area of quadrilateral $AFED$ is $45.$ What is the area of $ABCD?$

[asy] size(5cm); draw((0,0)--(6,0)--(6,6)--(0,6)--cycle); draw((0,6)--(6,0)); draw((3,0)--(6,6)); label("$A$",(0,6),NW); label("$B$",(6,6),NE); label("$C$",(6,0),SE); label("$D$",(0,0),SW); label("$E$",(3,0),S); label("$F$",(4,2),E); [/asy]

$\textbf{(A) } 100 \qquad \textbf{(B) } 108 \qquad \textbf{(C) } 120 \qquad \textbf{(D) } 135 \qquad \textbf{(E) } 144$

Solution 1

Let the area of $\triangle CEF$ be $x$. Thus, the area of triangle $\triangle ACD$ is $45+x$ and the area of the square is $2(45+x) = 90+2x$.

By AA similarity, $\triangle CEF \sim \triangle ABF$ with a 1:2 ratio, so the area of triangle $\triangle ABF$ is $4x$. Now consider trapezoid $ABED$. Its area is $45+4x$, which is three-fourths the area of the square. We set up an equation in $x$:

\[45+4x = \frac{3}{4}\left(90+2x\right)\] Solving, we get $x = 9$. The area of square $ABCD$ is $90+2x = 90 + 2 \cdot 9 = \boxed{\textbf{(B)} 108}$.

Solution 2

We can use analytic geometry for this problem.

Let us start by giving $D$ the coordinate $(0,0)$, $A$ the coordinate $(0,1)$, and so forth. $\overline{AC}$ and $\overline{EB}$ can be represented by the equations $y=-x+1$ and $y=2x-1$, respectively. Solving for their intersection gives point $F$ coordinates $\left(\frac{2}{3},\frac{1}{3}\right)$.

Now, $\triangle$$EFC$’s area is simply $\frac{\frac{1}{2}\cdot\frac{1}{3}}{2}$ or $\frac{1}{12}$. This means that pentagon $ABCEF$’s area is $\frac{1}{2}+\frac{1}{12}=\frac{7}{12}$ of the entire square, and it follows that quadrilateral $AFED$’s area is $\frac{5}{12}$ of the square.

The area of the square is then $\frac{45}{\frac{5}{12}}=9\cdot12=\boxed{\textbf{(B)}108}$.

Solution 3

Note that triangle $ABC$ has half the area of the square and triangle $FEC$ has $\dfrac1{12}$th. Thus the area of the quadrilateral is $1-1/2-1/12=5/12$th the area of the square. The area of the square is then $45\cdot\dfrac{12}{5}=\boxed{\textbf{(B.)}108}$.

Video Solution

https://www.youtube.com/watch?v=c4_-h7DsZFg - Happytwin

See Also

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

Set s to be the bottom left triangle. The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png