# Difference between revisions of "2018 AMC 8 Problems/Problem 22"

## Problem 22

Point $E$ is the midpoint of side $\overline{CD}$ in square $ABCD,$ and $\overline{BE}$ meets diagonal $\overline{AC}$ at $F.$ The area of quadrilateral $AFED$ is $45.$ What is the area of $ABCD?$

$[asy] size(5cm); draw((0,0)--(6,0)--(6,6)--(0,6)--cycle); draw((0,6)--(6,0)); draw((3,0)--(6,6)); label("A",(0,6),NW); label("B",(6,6),NE); label("C",(6,0),SE); label("D",(0,0),SW); label("E",(3,0),S); label("F",(4,2),E); [/asy]$

$\textbf{(A) } 100 \qquad \textbf{(B) } 108 \qquad \textbf{(C) } 120 \qquad \textbf{(D) } 135 \qquad \textbf{(E) } 144$

## Solution 1

Let the area of $\triangle CEF$ be $x$. Thus, the area of triangle $\triangle ACD$ is $45+x$ and the area of the square is $2(45+x) = 90+2x$.

By AA similarity, $\triangle CEF \sim \triangle ABF$ with a 1:2 ratio, so the area of triangle $\triangle ABF$ is $4x$. Now consider trapezoid $ABED$. Its area is $45+4x$, which is three-fourths the area of the square. We set up an equation in $x$:

$$45+4x = \frac{3}{4}\left(90+2x\right)$$ Solving, we get $x = 9$. The area of square $ABCD$ is $90+2x = 90 + 2 \cdot 9 = \boxed{\textbf{(B)} 108}$.

## Solution 2

We can use analytic geometry for this problem.

Let us start by giving $D$ the coordinate $(0,0)$, $A$ the coordinate $(0,1)$, and so forth. $\overline{AC}$ and $\overline{EB}$ can be represented by the equations $y=-x+1$ and $y=2x-1$, respectively. Solving for their intersection gives point $F$ coordinates $\left(\frac{2}{3},\frac{1}{3}\right)$.

Now, $\triangle$$EFC$’s area is simply $\frac{\frac{1}{2}\cdot\frac{1}{3}}{2}$ or $\frac{1}{12}$. This means that pentagon $ABCEF$’s area is $\frac{1}{2}+\frac{1}{12}=\frac{7}{12}$ of the entire square, and it follows that quadrilateral $AFED$’s area is $\frac{5}{12}$ of the square.

The area of the square is then $\frac{45}{\frac{5}{12}}=9\cdot12=\boxed{\textbf{(B)}108}$.

## Solution 3

Note that triangle $ABC$ has half the area of the square and triangle $FEC$ has $\dfrac1{12}$th. This the area of the quadrilateral is $1-1/2-1/12=5/12$th the area of the square. The area of the square is then $45\cdot\dfrac{12}{5}=\boxed{\textbf{(B)}108}$.